Termination w.r.t. Q of the following Term Rewriting System could not be shown:
Q restricted rewrite system:
The TRS R consists of the following rules:
dbl(0) → 0
dbl(s(X)) → s(n__s(n__dbl(activate(X))))
dbls(nil) → nil
dbls(cons(X, Y)) → cons(n__dbl(activate(X)), n__dbls(activate(Y)))
sel(0, cons(X, Y)) → activate(X)
sel(s(X), cons(Y, Z)) → sel(activate(X), activate(Z))
indx(nil, X) → nil
indx(cons(X, Y), Z) → cons(n__sel(activate(X), activate(Z)), n__indx(activate(Y), activate(Z)))
from(X) → cons(activate(X), n__from(n__s(activate(X))))
s(X) → n__s(X)
dbl(X) → n__dbl(X)
dbls(X) → n__dbls(X)
sel(X1, X2) → n__sel(X1, X2)
indx(X1, X2) → n__indx(X1, X2)
from(X) → n__from(X)
activate(n__s(X)) → s(X)
activate(n__dbl(X)) → dbl(activate(X))
activate(n__dbls(X)) → dbls(activate(X))
activate(n__sel(X1, X2)) → sel(activate(X1), activate(X2))
activate(n__indx(X1, X2)) → indx(activate(X1), X2)
activate(n__from(X)) → from(X)
activate(X) → X
Q is empty.
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
dbl(0) → 0
dbl(s(X)) → s(n__s(n__dbl(activate(X))))
dbls(nil) → nil
dbls(cons(X, Y)) → cons(n__dbl(activate(X)), n__dbls(activate(Y)))
sel(0, cons(X, Y)) → activate(X)
sel(s(X), cons(Y, Z)) → sel(activate(X), activate(Z))
indx(nil, X) → nil
indx(cons(X, Y), Z) → cons(n__sel(activate(X), activate(Z)), n__indx(activate(Y), activate(Z)))
from(X) → cons(activate(X), n__from(n__s(activate(X))))
s(X) → n__s(X)
dbl(X) → n__dbl(X)
dbls(X) → n__dbls(X)
sel(X1, X2) → n__sel(X1, X2)
indx(X1, X2) → n__indx(X1, X2)
from(X) → n__from(X)
activate(n__s(X)) → s(X)
activate(n__dbl(X)) → dbl(activate(X))
activate(n__dbls(X)) → dbls(activate(X))
activate(n__sel(X1, X2)) → sel(activate(X1), activate(X2))
activate(n__indx(X1, X2)) → indx(activate(X1), X2)
activate(n__from(X)) → from(X)
activate(X) → X
Q is empty.
Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:
INDX(cons(X, Y), Z) → ACTIVATE(Z)
ACTIVATE(n__sel(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__dbl(X)) → DBL(activate(X))
INDX(cons(X, Y), Z) → ACTIVATE(X)
ACTIVATE(n__dbls(X)) → DBLS(activate(X))
SEL(s(X), cons(Y, Z)) → ACTIVATE(Z)
ACTIVATE(n__sel(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__s(X)) → S(X)
ACTIVATE(n__dbls(X)) → ACTIVATE(X)
ACTIVATE(n__dbl(X)) → ACTIVATE(X)
FROM(X) → ACTIVATE(X)
SEL(0, cons(X, Y)) → ACTIVATE(X)
SEL(s(X), cons(Y, Z)) → SEL(activate(X), activate(Z))
ACTIVATE(n__indx(X1, X2)) → INDX(activate(X1), X2)
DBLS(cons(X, Y)) → ACTIVATE(Y)
ACTIVATE(n__indx(X1, X2)) → ACTIVATE(X1)
DBLS(cons(X, Y)) → ACTIVATE(X)
SEL(s(X), cons(Y, Z)) → ACTIVATE(X)
DBL(s(X)) → S(n__s(n__dbl(activate(X))))
DBL(s(X)) → ACTIVATE(X)
ACTIVATE(n__from(X)) → FROM(X)
ACTIVATE(n__sel(X1, X2)) → SEL(activate(X1), activate(X2))
INDX(cons(X, Y), Z) → ACTIVATE(Y)
The TRS R consists of the following rules:
dbl(0) → 0
dbl(s(X)) → s(n__s(n__dbl(activate(X))))
dbls(nil) → nil
dbls(cons(X, Y)) → cons(n__dbl(activate(X)), n__dbls(activate(Y)))
sel(0, cons(X, Y)) → activate(X)
sel(s(X), cons(Y, Z)) → sel(activate(X), activate(Z))
indx(nil, X) → nil
indx(cons(X, Y), Z) → cons(n__sel(activate(X), activate(Z)), n__indx(activate(Y), activate(Z)))
from(X) → cons(activate(X), n__from(n__s(activate(X))))
s(X) → n__s(X)
dbl(X) → n__dbl(X)
dbls(X) → n__dbls(X)
sel(X1, X2) → n__sel(X1, X2)
indx(X1, X2) → n__indx(X1, X2)
from(X) → n__from(X)
activate(n__s(X)) → s(X)
activate(n__dbl(X)) → dbl(activate(X))
activate(n__dbls(X)) → dbls(activate(X))
activate(n__sel(X1, X2)) → sel(activate(X1), activate(X2))
activate(n__indx(X1, X2)) → indx(activate(X1), X2)
activate(n__from(X)) → from(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
INDX(cons(X, Y), Z) → ACTIVATE(Z)
ACTIVATE(n__sel(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__dbl(X)) → DBL(activate(X))
INDX(cons(X, Y), Z) → ACTIVATE(X)
ACTIVATE(n__dbls(X)) → DBLS(activate(X))
SEL(s(X), cons(Y, Z)) → ACTIVATE(Z)
ACTIVATE(n__sel(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__s(X)) → S(X)
ACTIVATE(n__dbls(X)) → ACTIVATE(X)
ACTIVATE(n__dbl(X)) → ACTIVATE(X)
FROM(X) → ACTIVATE(X)
SEL(0, cons(X, Y)) → ACTIVATE(X)
SEL(s(X), cons(Y, Z)) → SEL(activate(X), activate(Z))
ACTIVATE(n__indx(X1, X2)) → INDX(activate(X1), X2)
DBLS(cons(X, Y)) → ACTIVATE(Y)
ACTIVATE(n__indx(X1, X2)) → ACTIVATE(X1)
DBLS(cons(X, Y)) → ACTIVATE(X)
SEL(s(X), cons(Y, Z)) → ACTIVATE(X)
DBL(s(X)) → S(n__s(n__dbl(activate(X))))
DBL(s(X)) → ACTIVATE(X)
ACTIVATE(n__from(X)) → FROM(X)
ACTIVATE(n__sel(X1, X2)) → SEL(activate(X1), activate(X2))
INDX(cons(X, Y), Z) → ACTIVATE(Y)
The TRS R consists of the following rules:
dbl(0) → 0
dbl(s(X)) → s(n__s(n__dbl(activate(X))))
dbls(nil) → nil
dbls(cons(X, Y)) → cons(n__dbl(activate(X)), n__dbls(activate(Y)))
sel(0, cons(X, Y)) → activate(X)
sel(s(X), cons(Y, Z)) → sel(activate(X), activate(Z))
indx(nil, X) → nil
indx(cons(X, Y), Z) → cons(n__sel(activate(X), activate(Z)), n__indx(activate(Y), activate(Z)))
from(X) → cons(activate(X), n__from(n__s(activate(X))))
s(X) → n__s(X)
dbl(X) → n__dbl(X)
dbls(X) → n__dbls(X)
sel(X1, X2) → n__sel(X1, X2)
indx(X1, X2) → n__indx(X1, X2)
from(X) → n__from(X)
activate(n__s(X)) → s(X)
activate(n__dbl(X)) → dbl(activate(X))
activate(n__dbls(X)) → dbls(activate(X))
activate(n__sel(X1, X2)) → sel(activate(X1), activate(X2))
activate(n__indx(X1, X2)) → indx(activate(X1), X2)
activate(n__from(X)) → from(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 2 less nodes.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
Q DP problem:
The TRS P consists of the following rules:
INDX(cons(X, Y), Z) → ACTIVATE(Z)
ACTIVATE(n__sel(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__dbl(X)) → DBL(activate(X))
INDX(cons(X, Y), Z) → ACTIVATE(X)
ACTIVATE(n__dbls(X)) → DBLS(activate(X))
SEL(s(X), cons(Y, Z)) → ACTIVATE(Z)
ACTIVATE(n__sel(X1, X2)) → ACTIVATE(X1)
FROM(X) → ACTIVATE(X)
ACTIVATE(n__dbl(X)) → ACTIVATE(X)
ACTIVATE(n__dbls(X)) → ACTIVATE(X)
SEL(0, cons(X, Y)) → ACTIVATE(X)
SEL(s(X), cons(Y, Z)) → SEL(activate(X), activate(Z))
ACTIVATE(n__indx(X1, X2)) → INDX(activate(X1), X2)
DBLS(cons(X, Y)) → ACTIVATE(Y)
ACTIVATE(n__indx(X1, X2)) → ACTIVATE(X1)
SEL(s(X), cons(Y, Z)) → ACTIVATE(X)
DBLS(cons(X, Y)) → ACTIVATE(X)
DBL(s(X)) → ACTIVATE(X)
INDX(cons(X, Y), Z) → ACTIVATE(Y)
ACTIVATE(n__from(X)) → FROM(X)
ACTIVATE(n__sel(X1, X2)) → SEL(activate(X1), activate(X2))
The TRS R consists of the following rules:
dbl(0) → 0
dbl(s(X)) → s(n__s(n__dbl(activate(X))))
dbls(nil) → nil
dbls(cons(X, Y)) → cons(n__dbl(activate(X)), n__dbls(activate(Y)))
sel(0, cons(X, Y)) → activate(X)
sel(s(X), cons(Y, Z)) → sel(activate(X), activate(Z))
indx(nil, X) → nil
indx(cons(X, Y), Z) → cons(n__sel(activate(X), activate(Z)), n__indx(activate(Y), activate(Z)))
from(X) → cons(activate(X), n__from(n__s(activate(X))))
s(X) → n__s(X)
dbl(X) → n__dbl(X)
dbls(X) → n__dbls(X)
sel(X1, X2) → n__sel(X1, X2)
indx(X1, X2) → n__indx(X1, X2)
from(X) → n__from(X)
activate(n__s(X)) → s(X)
activate(n__dbl(X)) → dbl(activate(X))
activate(n__dbls(X)) → dbls(activate(X))
activate(n__sel(X1, X2)) → sel(activate(X1), activate(X2))
activate(n__indx(X1, X2)) → indx(activate(X1), X2)
activate(n__from(X)) → from(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule ACTIVATE(n__dbl(X)) → DBL(activate(X)) at position [0] we obtained the following new rules:
ACTIVATE(n__dbl(n__s(x0))) → DBL(s(x0))
ACTIVATE(n__dbl(n__dbls(x0))) → DBL(dbls(activate(x0)))
ACTIVATE(n__dbl(n__indx(x0, x1))) → DBL(indx(activate(x0), x1))
ACTIVATE(n__dbl(x0)) → DBL(x0)
ACTIVATE(n__dbl(n__from(x0))) → DBL(from(x0))
ACTIVATE(n__dbl(n__dbl(x0))) → DBL(dbl(activate(x0)))
ACTIVATE(n__dbl(n__sel(x0, x1))) → DBL(sel(activate(x0), activate(x1)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
Q DP problem:
The TRS P consists of the following rules:
INDX(cons(X, Y), Z) → ACTIVATE(Z)
ACTIVATE(n__dbl(n__dbl(x0))) → DBL(dbl(activate(x0)))
SEL(s(X), cons(Y, Z)) → ACTIVATE(Z)
ACTIVATE(n__dbl(X)) → ACTIVATE(X)
ACTIVATE(n__dbls(X)) → ACTIVATE(X)
SEL(0, cons(X, Y)) → ACTIVATE(X)
DBLS(cons(X, Y)) → ACTIVATE(Y)
ACTIVATE(n__dbl(n__s(x0))) → DBL(s(x0))
ACTIVATE(n__from(X)) → FROM(X)
ACTIVATE(n__sel(X1, X2)) → SEL(activate(X1), activate(X2))
ACTIVATE(n__dbl(n__sel(x0, x1))) → DBL(sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__dbl(n__dbls(x0))) → DBL(dbls(activate(x0)))
INDX(cons(X, Y), Z) → ACTIVATE(X)
ACTIVATE(n__dbl(x0)) → DBL(x0)
ACTIVATE(n__dbl(n__from(x0))) → DBL(from(x0))
ACTIVATE(n__dbls(X)) → DBLS(activate(X))
ACTIVATE(n__sel(X1, X2)) → ACTIVATE(X1)
FROM(X) → ACTIVATE(X)
SEL(s(X), cons(Y, Z)) → SEL(activate(X), activate(Z))
ACTIVATE(n__indx(X1, X2)) → INDX(activate(X1), X2)
ACTIVATE(n__indx(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__dbl(n__indx(x0, x1))) → DBL(indx(activate(x0), x1))
SEL(s(X), cons(Y, Z)) → ACTIVATE(X)
DBLS(cons(X, Y)) → ACTIVATE(X)
DBL(s(X)) → ACTIVATE(X)
INDX(cons(X, Y), Z) → ACTIVATE(Y)
The TRS R consists of the following rules:
dbl(0) → 0
dbl(s(X)) → s(n__s(n__dbl(activate(X))))
dbls(nil) → nil
dbls(cons(X, Y)) → cons(n__dbl(activate(X)), n__dbls(activate(Y)))
sel(0, cons(X, Y)) → activate(X)
sel(s(X), cons(Y, Z)) → sel(activate(X), activate(Z))
indx(nil, X) → nil
indx(cons(X, Y), Z) → cons(n__sel(activate(X), activate(Z)), n__indx(activate(Y), activate(Z)))
from(X) → cons(activate(X), n__from(n__s(activate(X))))
s(X) → n__s(X)
dbl(X) → n__dbl(X)
dbls(X) → n__dbls(X)
sel(X1, X2) → n__sel(X1, X2)
indx(X1, X2) → n__indx(X1, X2)
from(X) → n__from(X)
activate(n__s(X)) → s(X)
activate(n__dbl(X)) → dbl(activate(X))
activate(n__dbls(X)) → dbls(activate(X))
activate(n__sel(X1, X2)) → sel(activate(X1), activate(X2))
activate(n__indx(X1, X2)) → indx(activate(X1), X2)
activate(n__from(X)) → from(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule ACTIVATE(n__dbls(X)) → DBLS(activate(X)) at position [0] we obtained the following new rules:
ACTIVATE(n__dbls(n__s(x0))) → DBLS(s(x0))
ACTIVATE(n__dbls(n__dbl(x0))) → DBLS(dbl(activate(x0)))
ACTIVATE(n__dbls(n__indx(x0, x1))) → DBLS(indx(activate(x0), x1))
ACTIVATE(n__dbls(n__dbls(x0))) → DBLS(dbls(activate(x0)))
ACTIVATE(n__dbls(n__from(x0))) → DBLS(from(x0))
ACTIVATE(n__dbls(n__sel(x0, x1))) → DBLS(sel(activate(x0), activate(x1)))
ACTIVATE(n__dbls(x0)) → DBLS(x0)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
Q DP problem:
The TRS P consists of the following rules:
INDX(cons(X, Y), Z) → ACTIVATE(Z)
ACTIVATE(n__dbls(n__dbl(x0))) → DBLS(dbl(activate(x0)))
ACTIVATE(n__dbls(n__indx(x0, x1))) → DBLS(indx(activate(x0), x1))
SEL(s(X), cons(Y, Z)) → ACTIVATE(Z)
ACTIVATE(n__dbl(n__dbl(x0))) → DBL(dbl(activate(x0)))
ACTIVATE(n__dbls(n__dbls(x0))) → DBLS(dbls(activate(x0)))
ACTIVATE(n__dbls(X)) → ACTIVATE(X)
ACTIVATE(n__dbl(X)) → ACTIVATE(X)
SEL(0, cons(X, Y)) → ACTIVATE(X)
ACTIVATE(n__dbl(n__s(x0))) → DBL(s(x0))
DBLS(cons(X, Y)) → ACTIVATE(Y)
ACTIVATE(n__dbls(n__s(x0))) → DBLS(s(x0))
ACTIVATE(n__sel(X1, X2)) → SEL(activate(X1), activate(X2))
ACTIVATE(n__from(X)) → FROM(X)
ACTIVATE(n__dbl(n__sel(x0, x1))) → DBL(sel(activate(x0), activate(x1)))
ACTIVATE(n__dbls(x0)) → DBLS(x0)
ACTIVATE(n__dbl(n__dbls(x0))) → DBL(dbls(activate(x0)))
ACTIVATE(n__sel(X1, X2)) → ACTIVATE(X2)
INDX(cons(X, Y), Z) → ACTIVATE(X)
ACTIVATE(n__dbl(x0)) → DBL(x0)
ACTIVATE(n__dbl(n__from(x0))) → DBL(from(x0))
ACTIVATE(n__dbls(n__from(x0))) → DBLS(from(x0))
ACTIVATE(n__sel(X1, X2)) → ACTIVATE(X1)
FROM(X) → ACTIVATE(X)
ACTIVATE(n__dbls(n__sel(x0, x1))) → DBLS(sel(activate(x0), activate(x1)))
SEL(s(X), cons(Y, Z)) → SEL(activate(X), activate(Z))
ACTIVATE(n__indx(X1, X2)) → INDX(activate(X1), X2)
ACTIVATE(n__dbl(n__indx(x0, x1))) → DBL(indx(activate(x0), x1))
ACTIVATE(n__indx(X1, X2)) → ACTIVATE(X1)
DBLS(cons(X, Y)) → ACTIVATE(X)
SEL(s(X), cons(Y, Z)) → ACTIVATE(X)
DBL(s(X)) → ACTIVATE(X)
INDX(cons(X, Y), Z) → ACTIVATE(Y)
The TRS R consists of the following rules:
dbl(0) → 0
dbl(s(X)) → s(n__s(n__dbl(activate(X))))
dbls(nil) → nil
dbls(cons(X, Y)) → cons(n__dbl(activate(X)), n__dbls(activate(Y)))
sel(0, cons(X, Y)) → activate(X)
sel(s(X), cons(Y, Z)) → sel(activate(X), activate(Z))
indx(nil, X) → nil
indx(cons(X, Y), Z) → cons(n__sel(activate(X), activate(Z)), n__indx(activate(Y), activate(Z)))
from(X) → cons(activate(X), n__from(n__s(activate(X))))
s(X) → n__s(X)
dbl(X) → n__dbl(X)
dbls(X) → n__dbls(X)
sel(X1, X2) → n__sel(X1, X2)
indx(X1, X2) → n__indx(X1, X2)
from(X) → n__from(X)
activate(n__s(X)) → s(X)
activate(n__dbl(X)) → dbl(activate(X))
activate(n__dbls(X)) → dbls(activate(X))
activate(n__sel(X1, X2)) → sel(activate(X1), activate(X2))
activate(n__indx(X1, X2)) → indx(activate(X1), X2)
activate(n__from(X)) → from(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule ACTIVATE(n__sel(X1, X2)) → SEL(activate(X1), activate(X2)) at position [0] we obtained the following new rules:
ACTIVATE(n__sel(n__dbl(x0), y1)) → SEL(dbl(activate(x0)), activate(y1))
ACTIVATE(n__sel(n__sel(x0, x1), y1)) → SEL(sel(activate(x0), activate(x1)), activate(y1))
ACTIVATE(n__sel(n__indx(x0, x1), y1)) → SEL(indx(activate(x0), x1), activate(y1))
ACTIVATE(n__sel(n__from(x0), y1)) → SEL(from(x0), activate(y1))
ACTIVATE(n__sel(x0, y1)) → SEL(x0, activate(y1))
ACTIVATE(n__sel(n__s(x0), y1)) → SEL(s(x0), activate(y1))
ACTIVATE(n__sel(n__dbls(x0), y1)) → SEL(dbls(activate(x0)), activate(y1))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
Q DP problem:
The TRS P consists of the following rules:
INDX(cons(X, Y), Z) → ACTIVATE(Z)
ACTIVATE(n__dbls(n__dbl(x0))) → DBLS(dbl(activate(x0)))
ACTIVATE(n__sel(n__from(x0), y1)) → SEL(from(x0), activate(y1))
ACTIVATE(n__dbls(n__indx(x0, x1))) → DBLS(indx(activate(x0), x1))
ACTIVATE(n__dbl(n__dbl(x0))) → DBL(dbl(activate(x0)))
SEL(s(X), cons(Y, Z)) → ACTIVATE(Z)
ACTIVATE(n__dbls(n__dbls(x0))) → DBLS(dbls(activate(x0)))
ACTIVATE(n__dbl(X)) → ACTIVATE(X)
ACTIVATE(n__dbls(X)) → ACTIVATE(X)
SEL(0, cons(X, Y)) → ACTIVATE(X)
ACTIVATE(n__sel(n__indx(x0, x1), y1)) → SEL(indx(activate(x0), x1), activate(y1))
DBLS(cons(X, Y)) → ACTIVATE(Y)
ACTIVATE(n__dbl(n__s(x0))) → DBL(s(x0))
ACTIVATE(n__dbls(n__s(x0))) → DBLS(s(x0))
ACTIVATE(n__sel(x0, y1)) → SEL(x0, activate(y1))
ACTIVATE(n__from(X)) → FROM(X)
ACTIVATE(n__dbl(n__sel(x0, x1))) → DBL(sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__dbls(x0), y1)) → SEL(dbls(activate(x0)), activate(y1))
ACTIVATE(n__dbls(x0)) → DBLS(x0)
ACTIVATE(n__sel(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__dbl(n__dbls(x0))) → DBL(dbls(activate(x0)))
INDX(cons(X, Y), Z) → ACTIVATE(X)
ACTIVATE(n__dbl(x0)) → DBL(x0)
ACTIVATE(n__dbl(n__from(x0))) → DBL(from(x0))
ACTIVATE(n__sel(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__dbls(n__from(x0))) → DBLS(from(x0))
FROM(X) → ACTIVATE(X)
ACTIVATE(n__dbls(n__sel(x0, x1))) → DBLS(sel(activate(x0), activate(x1)))
SEL(s(X), cons(Y, Z)) → SEL(activate(X), activate(Z))
ACTIVATE(n__indx(X1, X2)) → INDX(activate(X1), X2)
ACTIVATE(n__sel(n__sel(x0, x1), y1)) → SEL(sel(activate(x0), activate(x1)), activate(y1))
ACTIVATE(n__sel(n__dbl(x0), y1)) → SEL(dbl(activate(x0)), activate(y1))
ACTIVATE(n__indx(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__dbl(n__indx(x0, x1))) → DBL(indx(activate(x0), x1))
SEL(s(X), cons(Y, Z)) → ACTIVATE(X)
DBLS(cons(X, Y)) → ACTIVATE(X)
DBL(s(X)) → ACTIVATE(X)
INDX(cons(X, Y), Z) → ACTIVATE(Y)
ACTIVATE(n__sel(n__s(x0), y1)) → SEL(s(x0), activate(y1))
The TRS R consists of the following rules:
dbl(0) → 0
dbl(s(X)) → s(n__s(n__dbl(activate(X))))
dbls(nil) → nil
dbls(cons(X, Y)) → cons(n__dbl(activate(X)), n__dbls(activate(Y)))
sel(0, cons(X, Y)) → activate(X)
sel(s(X), cons(Y, Z)) → sel(activate(X), activate(Z))
indx(nil, X) → nil
indx(cons(X, Y), Z) → cons(n__sel(activate(X), activate(Z)), n__indx(activate(Y), activate(Z)))
from(X) → cons(activate(X), n__from(n__s(activate(X))))
s(X) → n__s(X)
dbl(X) → n__dbl(X)
dbls(X) → n__dbls(X)
sel(X1, X2) → n__sel(X1, X2)
indx(X1, X2) → n__indx(X1, X2)
from(X) → n__from(X)
activate(n__s(X)) → s(X)
activate(n__dbl(X)) → dbl(activate(X))
activate(n__dbls(X)) → dbls(activate(X))
activate(n__sel(X1, X2)) → sel(activate(X1), activate(X2))
activate(n__indx(X1, X2)) → indx(activate(X1), X2)
activate(n__from(X)) → from(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule ACTIVATE(n__indx(X1, X2)) → INDX(activate(X1), X2) at position [0] we obtained the following new rules:
ACTIVATE(n__indx(n__from(x0), y1)) → INDX(from(x0), y1)
ACTIVATE(n__indx(n__dbl(x0), y1)) → INDX(dbl(activate(x0)), y1)
ACTIVATE(n__indx(n__indx(x0, x1), y1)) → INDX(indx(activate(x0), x1), y1)
ACTIVATE(n__indx(n__s(x0), y1)) → INDX(s(x0), y1)
ACTIVATE(n__indx(x0, y1)) → INDX(x0, y1)
ACTIVATE(n__indx(n__dbls(x0), y1)) → INDX(dbls(activate(x0)), y1)
ACTIVATE(n__indx(n__sel(x0, x1), y1)) → INDX(sel(activate(x0), activate(x1)), y1)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
Q DP problem:
The TRS P consists of the following rules:
INDX(cons(X, Y), Z) → ACTIVATE(Z)
ACTIVATE(n__dbls(n__dbl(x0))) → DBLS(dbl(activate(x0)))
ACTIVATE(n__dbls(n__indx(x0, x1))) → DBLS(indx(activate(x0), x1))
ACTIVATE(n__sel(n__from(x0), y1)) → SEL(from(x0), activate(y1))
SEL(s(X), cons(Y, Z)) → ACTIVATE(Z)
ACTIVATE(n__dbl(n__dbl(x0))) → DBL(dbl(activate(x0)))
ACTIVATE(n__dbls(n__dbls(x0))) → DBLS(dbls(activate(x0)))
ACTIVATE(n__dbls(X)) → ACTIVATE(X)
ACTIVATE(n__dbl(X)) → ACTIVATE(X)
ACTIVATE(n__indx(n__s(x0), y1)) → INDX(s(x0), y1)
SEL(0, cons(X, Y)) → ACTIVATE(X)
ACTIVATE(n__dbl(n__s(x0))) → DBL(s(x0))
DBLS(cons(X, Y)) → ACTIVATE(Y)
ACTIVATE(n__sel(n__indx(x0, x1), y1)) → SEL(indx(activate(x0), x1), activate(y1))
ACTIVATE(n__dbls(n__s(x0))) → DBLS(s(x0))
ACTIVATE(n__sel(x0, y1)) → SEL(x0, activate(y1))
ACTIVATE(n__from(X)) → FROM(X)
ACTIVATE(n__indx(x0, y1)) → INDX(x0, y1)
ACTIVATE(n__dbl(n__sel(x0, x1))) → DBL(sel(activate(x0), activate(x1)))
ACTIVATE(n__dbls(x0)) → DBLS(x0)
ACTIVATE(n__sel(n__dbls(x0), y1)) → SEL(dbls(activate(x0)), activate(y1))
ACTIVATE(n__dbl(n__dbls(x0))) → DBL(dbls(activate(x0)))
ACTIVATE(n__sel(X1, X2)) → ACTIVATE(X2)
INDX(cons(X, Y), Z) → ACTIVATE(X)
ACTIVATE(n__dbl(x0)) → DBL(x0)
ACTIVATE(n__dbl(n__from(x0))) → DBL(from(x0))
ACTIVATE(n__dbls(n__from(x0))) → DBLS(from(x0))
ACTIVATE(n__sel(X1, X2)) → ACTIVATE(X1)
FROM(X) → ACTIVATE(X)
ACTIVATE(n__dbls(n__sel(x0, x1))) → DBLS(sel(activate(x0), activate(x1)))
ACTIVATE(n__indx(n__dbls(x0), y1)) → INDX(dbls(activate(x0)), y1)
SEL(s(X), cons(Y, Z)) → SEL(activate(X), activate(Z))
ACTIVATE(n__sel(n__dbl(x0), y1)) → SEL(dbl(activate(x0)), activate(y1))
ACTIVATE(n__sel(n__sel(x0, x1), y1)) → SEL(sel(activate(x0), activate(x1)), activate(y1))
ACTIVATE(n__dbl(n__indx(x0, x1))) → DBL(indx(activate(x0), x1))
ACTIVATE(n__indx(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__indx(n__from(x0), y1)) → INDX(from(x0), y1)
DBLS(cons(X, Y)) → ACTIVATE(X)
SEL(s(X), cons(Y, Z)) → ACTIVATE(X)
ACTIVATE(n__indx(n__dbl(x0), y1)) → INDX(dbl(activate(x0)), y1)
DBL(s(X)) → ACTIVATE(X)
INDX(cons(X, Y), Z) → ACTIVATE(Y)
ACTIVATE(n__sel(n__s(x0), y1)) → SEL(s(x0), activate(y1))
ACTIVATE(n__indx(n__indx(x0, x1), y1)) → INDX(indx(activate(x0), x1), y1)
ACTIVATE(n__indx(n__sel(x0, x1), y1)) → INDX(sel(activate(x0), activate(x1)), y1)
The TRS R consists of the following rules:
dbl(0) → 0
dbl(s(X)) → s(n__s(n__dbl(activate(X))))
dbls(nil) → nil
dbls(cons(X, Y)) → cons(n__dbl(activate(X)), n__dbls(activate(Y)))
sel(0, cons(X, Y)) → activate(X)
sel(s(X), cons(Y, Z)) → sel(activate(X), activate(Z))
indx(nil, X) → nil
indx(cons(X, Y), Z) → cons(n__sel(activate(X), activate(Z)), n__indx(activate(Y), activate(Z)))
from(X) → cons(activate(X), n__from(n__s(activate(X))))
s(X) → n__s(X)
dbl(X) → n__dbl(X)
dbls(X) → n__dbls(X)
sel(X1, X2) → n__sel(X1, X2)
indx(X1, X2) → n__indx(X1, X2)
from(X) → n__from(X)
activate(n__s(X)) → s(X)
activate(n__dbl(X)) → dbl(activate(X))
activate(n__dbls(X)) → dbls(activate(X))
activate(n__sel(X1, X2)) → sel(activate(X1), activate(X2))
activate(n__indx(X1, X2)) → indx(activate(X1), X2)
activate(n__from(X)) → from(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule SEL(s(X), cons(Y, Z)) → SEL(activate(X), activate(Z)) at position [0] we obtained the following new rules:
SEL(s(n__dbl(x0)), cons(y1, y2)) → SEL(dbl(activate(x0)), activate(y2))
SEL(s(n__s(x0)), cons(y1, y2)) → SEL(s(x0), activate(y2))
SEL(s(n__indx(x0, x1)), cons(y1, y2)) → SEL(indx(activate(x0), x1), activate(y2))
SEL(s(n__sel(x0, x1)), cons(y1, y2)) → SEL(sel(activate(x0), activate(x1)), activate(y2))
SEL(s(n__from(x0)), cons(y1, y2)) → SEL(from(x0), activate(y2))
SEL(s(x0), cons(y1, y2)) → SEL(x0, activate(y2))
SEL(s(n__dbls(x0)), cons(y1, y2)) → SEL(dbls(activate(x0)), activate(y2))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
Q DP problem:
The TRS P consists of the following rules:
INDX(cons(X, Y), Z) → ACTIVATE(Z)
ACTIVATE(n__sel(n__from(x0), y1)) → SEL(from(x0), activate(y1))
SEL(s(X), cons(Y, Z)) → ACTIVATE(Z)
ACTIVATE(n__dbl(n__dbl(x0))) → DBL(dbl(activate(x0)))
ACTIVATE(n__dbls(X)) → ACTIVATE(X)
ACTIVATE(n__dbl(X)) → ACTIVATE(X)
SEL(0, cons(X, Y)) → ACTIVATE(X)
DBLS(cons(X, Y)) → ACTIVATE(Y)
SEL(s(n__s(x0)), cons(y1, y2)) → SEL(s(x0), activate(y2))
ACTIVATE(n__sel(x0, y1)) → SEL(x0, activate(y1))
ACTIVATE(n__from(X)) → FROM(X)
ACTIVATE(n__dbls(x0)) → DBLS(x0)
ACTIVATE(n__dbl(n__dbls(x0))) → DBL(dbls(activate(x0)))
ACTIVATE(n__sel(X1, X2)) → ACTIVATE(X2)
INDX(cons(X, Y), Z) → ACTIVATE(X)
ACTIVATE(n__dbl(x0)) → DBL(x0)
ACTIVATE(n__dbl(n__from(x0))) → DBL(from(x0))
SEL(s(n__indx(x0, x1)), cons(y1, y2)) → SEL(indx(activate(x0), x1), activate(y2))
ACTIVATE(n__dbls(n__from(x0))) → DBLS(from(x0))
ACTIVATE(n__sel(X1, X2)) → ACTIVATE(X1)
FROM(X) → ACTIVATE(X)
ACTIVATE(n__dbls(n__sel(x0, x1))) → DBLS(sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__sel(x0, x1), y1)) → SEL(sel(activate(x0), activate(x1)), activate(y1))
ACTIVATE(n__dbl(n__indx(x0, x1))) → DBL(indx(activate(x0), x1))
DBLS(cons(X, Y)) → ACTIVATE(X)
SEL(s(X), cons(Y, Z)) → ACTIVATE(X)
DBL(s(X)) → ACTIVATE(X)
ACTIVATE(n__sel(n__s(x0), y1)) → SEL(s(x0), activate(y1))
ACTIVATE(n__dbls(n__dbl(x0))) → DBLS(dbl(activate(x0)))
ACTIVATE(n__dbls(n__indx(x0, x1))) → DBLS(indx(activate(x0), x1))
ACTIVATE(n__dbls(n__dbls(x0))) → DBLS(dbls(activate(x0)))
ACTIVATE(n__indx(n__s(x0), y1)) → INDX(s(x0), y1)
ACTIVATE(n__dbl(n__s(x0))) → DBL(s(x0))
ACTIVATE(n__sel(n__indx(x0, x1), y1)) → SEL(indx(activate(x0), x1), activate(y1))
ACTIVATE(n__dbls(n__s(x0))) → DBLS(s(x0))
SEL(s(n__from(x0)), cons(y1, y2)) → SEL(from(x0), activate(y2))
ACTIVATE(n__indx(x0, y1)) → INDX(x0, y1)
ACTIVATE(n__dbl(n__sel(x0, x1))) → DBL(sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__dbls(x0), y1)) → SEL(dbls(activate(x0)), activate(y1))
SEL(s(n__dbls(x0)), cons(y1, y2)) → SEL(dbls(activate(x0)), activate(y2))
SEL(s(n__dbl(x0)), cons(y1, y2)) → SEL(dbl(activate(x0)), activate(y2))
SEL(s(n__sel(x0, x1)), cons(y1, y2)) → SEL(sel(activate(x0), activate(x1)), activate(y2))
ACTIVATE(n__indx(n__dbls(x0), y1)) → INDX(dbls(activate(x0)), y1)
ACTIVATE(n__sel(n__dbl(x0), y1)) → SEL(dbl(activate(x0)), activate(y1))
ACTIVATE(n__indx(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__indx(n__from(x0), y1)) → INDX(from(x0), y1)
ACTIVATE(n__indx(n__dbl(x0), y1)) → INDX(dbl(activate(x0)), y1)
INDX(cons(X, Y), Z) → ACTIVATE(Y)
SEL(s(x0), cons(y1, y2)) → SEL(x0, activate(y2))
ACTIVATE(n__indx(n__indx(x0, x1), y1)) → INDX(indx(activate(x0), x1), y1)
ACTIVATE(n__indx(n__sel(x0, x1), y1)) → INDX(sel(activate(x0), activate(x1)), y1)
The TRS R consists of the following rules:
dbl(0) → 0
dbl(s(X)) → s(n__s(n__dbl(activate(X))))
dbls(nil) → nil
dbls(cons(X, Y)) → cons(n__dbl(activate(X)), n__dbls(activate(Y)))
sel(0, cons(X, Y)) → activate(X)
sel(s(X), cons(Y, Z)) → sel(activate(X), activate(Z))
indx(nil, X) → nil
indx(cons(X, Y), Z) → cons(n__sel(activate(X), activate(Z)), n__indx(activate(Y), activate(Z)))
from(X) → cons(activate(X), n__from(n__s(activate(X))))
s(X) → n__s(X)
dbl(X) → n__dbl(X)
dbls(X) → n__dbls(X)
sel(X1, X2) → n__sel(X1, X2)
indx(X1, X2) → n__indx(X1, X2)
from(X) → n__from(X)
activate(n__s(X)) → s(X)
activate(n__dbl(X)) → dbl(activate(X))
activate(n__dbls(X)) → dbls(activate(X))
activate(n__sel(X1, X2)) → sel(activate(X1), activate(X2))
activate(n__indx(X1, X2)) → indx(activate(X1), X2)
activate(n__from(X)) → from(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule ACTIVATE(n__dbl(n__from(x0))) → DBL(from(x0)) at position [0] we obtained the following new rules:
ACTIVATE(n__dbl(n__from(x0))) → DBL(cons(activate(x0), n__from(n__s(activate(x0)))))
ACTIVATE(n__dbl(n__from(x0))) → DBL(n__from(x0))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
INDX(cons(X, Y), Z) → ACTIVATE(Z)
ACTIVATE(n__sel(n__from(x0), y1)) → SEL(from(x0), activate(y1))
ACTIVATE(n__dbl(n__dbl(x0))) → DBL(dbl(activate(x0)))
SEL(s(X), cons(Y, Z)) → ACTIVATE(Z)
ACTIVATE(n__dbl(X)) → ACTIVATE(X)
ACTIVATE(n__dbls(X)) → ACTIVATE(X)
SEL(0, cons(X, Y)) → ACTIVATE(X)
DBLS(cons(X, Y)) → ACTIVATE(Y)
SEL(s(n__s(x0)), cons(y1, y2)) → SEL(s(x0), activate(y2))
ACTIVATE(n__sel(x0, y1)) → SEL(x0, activate(y1))
ACTIVATE(n__from(X)) → FROM(X)
ACTIVATE(n__dbls(x0)) → DBLS(x0)
ACTIVATE(n__sel(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__dbl(n__dbls(x0))) → DBL(dbls(activate(x0)))
INDX(cons(X, Y), Z) → ACTIVATE(X)
ACTIVATE(n__dbl(x0)) → DBL(x0)
SEL(s(n__indx(x0, x1)), cons(y1, y2)) → SEL(indx(activate(x0), x1), activate(y2))
ACTIVATE(n__sel(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__dbls(n__from(x0))) → DBLS(from(x0))
FROM(X) → ACTIVATE(X)
ACTIVATE(n__dbls(n__sel(x0, x1))) → DBLS(sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__sel(x0, x1), y1)) → SEL(sel(activate(x0), activate(x1)), activate(y1))
ACTIVATE(n__dbl(n__indx(x0, x1))) → DBL(indx(activate(x0), x1))
SEL(s(X), cons(Y, Z)) → ACTIVATE(X)
DBLS(cons(X, Y)) → ACTIVATE(X)
DBL(s(X)) → ACTIVATE(X)
ACTIVATE(n__sel(n__s(x0), y1)) → SEL(s(x0), activate(y1))
ACTIVATE(n__dbls(n__dbl(x0))) → DBLS(dbl(activate(x0)))
ACTIVATE(n__dbls(n__indx(x0, x1))) → DBLS(indx(activate(x0), x1))
ACTIVATE(n__dbls(n__dbls(x0))) → DBLS(dbls(activate(x0)))
ACTIVATE(n__indx(n__s(x0), y1)) → INDX(s(x0), y1)
ACTIVATE(n__sel(n__indx(x0, x1), y1)) → SEL(indx(activate(x0), x1), activate(y1))
ACTIVATE(n__dbl(n__s(x0))) → DBL(s(x0))
ACTIVATE(n__dbls(n__s(x0))) → DBLS(s(x0))
ACTIVATE(n__dbl(n__from(x0))) → DBL(cons(activate(x0), n__from(n__s(activate(x0)))))
ACTIVATE(n__dbl(n__from(x0))) → DBL(n__from(x0))
SEL(s(n__from(x0)), cons(y1, y2)) → SEL(from(x0), activate(y2))
ACTIVATE(n__dbl(n__sel(x0, x1))) → DBL(sel(activate(x0), activate(x1)))
ACTIVATE(n__indx(x0, y1)) → INDX(x0, y1)
ACTIVATE(n__sel(n__dbls(x0), y1)) → SEL(dbls(activate(x0)), activate(y1))
SEL(s(n__dbls(x0)), cons(y1, y2)) → SEL(dbls(activate(x0)), activate(y2))
SEL(s(n__dbl(x0)), cons(y1, y2)) → SEL(dbl(activate(x0)), activate(y2))
SEL(s(n__sel(x0, x1)), cons(y1, y2)) → SEL(sel(activate(x0), activate(x1)), activate(y2))
ACTIVATE(n__indx(n__dbls(x0), y1)) → INDX(dbls(activate(x0)), y1)
ACTIVATE(n__sel(n__dbl(x0), y1)) → SEL(dbl(activate(x0)), activate(y1))
ACTIVATE(n__indx(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__indx(n__from(x0), y1)) → INDX(from(x0), y1)
ACTIVATE(n__indx(n__dbl(x0), y1)) → INDX(dbl(activate(x0)), y1)
INDX(cons(X, Y), Z) → ACTIVATE(Y)
SEL(s(x0), cons(y1, y2)) → SEL(x0, activate(y2))
ACTIVATE(n__indx(n__indx(x0, x1), y1)) → INDX(indx(activate(x0), x1), y1)
ACTIVATE(n__indx(n__sel(x0, x1), y1)) → INDX(sel(activate(x0), activate(x1)), y1)
The TRS R consists of the following rules:
dbl(0) → 0
dbl(s(X)) → s(n__s(n__dbl(activate(X))))
dbls(nil) → nil
dbls(cons(X, Y)) → cons(n__dbl(activate(X)), n__dbls(activate(Y)))
sel(0, cons(X, Y)) → activate(X)
sel(s(X), cons(Y, Z)) → sel(activate(X), activate(Z))
indx(nil, X) → nil
indx(cons(X, Y), Z) → cons(n__sel(activate(X), activate(Z)), n__indx(activate(Y), activate(Z)))
from(X) → cons(activate(X), n__from(n__s(activate(X))))
s(X) → n__s(X)
dbl(X) → n__dbl(X)
dbls(X) → n__dbls(X)
sel(X1, X2) → n__sel(X1, X2)
indx(X1, X2) → n__indx(X1, X2)
from(X) → n__from(X)
activate(n__s(X)) → s(X)
activate(n__dbl(X)) → dbl(activate(X))
activate(n__dbls(X)) → dbls(activate(X))
activate(n__sel(X1, X2)) → sel(activate(X1), activate(X2))
activate(n__indx(X1, X2)) → indx(activate(X1), X2)
activate(n__from(X)) → from(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 2 less nodes.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
Q DP problem:
The TRS P consists of the following rules:
INDX(cons(X, Y), Z) → ACTIVATE(Z)
ACTIVATE(n__sel(n__from(x0), y1)) → SEL(from(x0), activate(y1))
ACTIVATE(n__dbl(n__dbl(x0))) → DBL(dbl(activate(x0)))
SEL(s(X), cons(Y, Z)) → ACTIVATE(Z)
ACTIVATE(n__dbl(X)) → ACTIVATE(X)
ACTIVATE(n__dbls(X)) → ACTIVATE(X)
SEL(0, cons(X, Y)) → ACTIVATE(X)
DBLS(cons(X, Y)) → ACTIVATE(Y)
SEL(s(n__s(x0)), cons(y1, y2)) → SEL(s(x0), activate(y2))
ACTIVATE(n__sel(x0, y1)) → SEL(x0, activate(y1))
ACTIVATE(n__from(X)) → FROM(X)
ACTIVATE(n__dbls(x0)) → DBLS(x0)
ACTIVATE(n__sel(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__dbl(n__dbls(x0))) → DBL(dbls(activate(x0)))
INDX(cons(X, Y), Z) → ACTIVATE(X)
ACTIVATE(n__dbl(x0)) → DBL(x0)
SEL(s(n__indx(x0, x1)), cons(y1, y2)) → SEL(indx(activate(x0), x1), activate(y2))
ACTIVATE(n__dbls(n__from(x0))) → DBLS(from(x0))
ACTIVATE(n__sel(X1, X2)) → ACTIVATE(X1)
FROM(X) → ACTIVATE(X)
ACTIVATE(n__dbls(n__sel(x0, x1))) → DBLS(sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__sel(x0, x1), y1)) → SEL(sel(activate(x0), activate(x1)), activate(y1))
ACTIVATE(n__dbl(n__indx(x0, x1))) → DBL(indx(activate(x0), x1))
DBLS(cons(X, Y)) → ACTIVATE(X)
SEL(s(X), cons(Y, Z)) → ACTIVATE(X)
DBL(s(X)) → ACTIVATE(X)
ACTIVATE(n__sel(n__s(x0), y1)) → SEL(s(x0), activate(y1))
ACTIVATE(n__dbls(n__dbl(x0))) → DBLS(dbl(activate(x0)))
ACTIVATE(n__dbls(n__indx(x0, x1))) → DBLS(indx(activate(x0), x1))
ACTIVATE(n__dbls(n__dbls(x0))) → DBLS(dbls(activate(x0)))
ACTIVATE(n__indx(n__s(x0), y1)) → INDX(s(x0), y1)
ACTIVATE(n__dbl(n__s(x0))) → DBL(s(x0))
ACTIVATE(n__sel(n__indx(x0, x1), y1)) → SEL(indx(activate(x0), x1), activate(y1))
ACTIVATE(n__dbls(n__s(x0))) → DBLS(s(x0))
SEL(s(n__from(x0)), cons(y1, y2)) → SEL(from(x0), activate(y2))
ACTIVATE(n__dbl(n__sel(x0, x1))) → DBL(sel(activate(x0), activate(x1)))
ACTIVATE(n__indx(x0, y1)) → INDX(x0, y1)
ACTIVATE(n__sel(n__dbls(x0), y1)) → SEL(dbls(activate(x0)), activate(y1))
SEL(s(n__dbls(x0)), cons(y1, y2)) → SEL(dbls(activate(x0)), activate(y2))
SEL(s(n__dbl(x0)), cons(y1, y2)) → SEL(dbl(activate(x0)), activate(y2))
SEL(s(n__sel(x0, x1)), cons(y1, y2)) → SEL(sel(activate(x0), activate(x1)), activate(y2))
ACTIVATE(n__indx(n__dbls(x0), y1)) → INDX(dbls(activate(x0)), y1)
ACTIVATE(n__sel(n__dbl(x0), y1)) → SEL(dbl(activate(x0)), activate(y1))
ACTIVATE(n__indx(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__indx(n__from(x0), y1)) → INDX(from(x0), y1)
ACTIVATE(n__indx(n__dbl(x0), y1)) → INDX(dbl(activate(x0)), y1)
INDX(cons(X, Y), Z) → ACTIVATE(Y)
SEL(s(x0), cons(y1, y2)) → SEL(x0, activate(y2))
ACTIVATE(n__indx(n__indx(x0, x1), y1)) → INDX(indx(activate(x0), x1), y1)
ACTIVATE(n__indx(n__sel(x0, x1), y1)) → INDX(sel(activate(x0), activate(x1)), y1)
The TRS R consists of the following rules:
dbl(0) → 0
dbl(s(X)) → s(n__s(n__dbl(activate(X))))
dbls(nil) → nil
dbls(cons(X, Y)) → cons(n__dbl(activate(X)), n__dbls(activate(Y)))
sel(0, cons(X, Y)) → activate(X)
sel(s(X), cons(Y, Z)) → sel(activate(X), activate(Z))
indx(nil, X) → nil
indx(cons(X, Y), Z) → cons(n__sel(activate(X), activate(Z)), n__indx(activate(Y), activate(Z)))
from(X) → cons(activate(X), n__from(n__s(activate(X))))
s(X) → n__s(X)
dbl(X) → n__dbl(X)
dbls(X) → n__dbls(X)
sel(X1, X2) → n__sel(X1, X2)
indx(X1, X2) → n__indx(X1, X2)
from(X) → n__from(X)
activate(n__s(X)) → s(X)
activate(n__dbl(X)) → dbl(activate(X))
activate(n__dbls(X)) → dbls(activate(X))
activate(n__sel(X1, X2)) → sel(activate(X1), activate(X2))
activate(n__indx(X1, X2)) → indx(activate(X1), X2)
activate(n__from(X)) → from(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule ACTIVATE(n__dbls(n__s(x0))) → DBLS(s(x0)) at position [0] we obtained the following new rules:
ACTIVATE(n__dbls(n__s(x0))) → DBLS(n__s(x0))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
INDX(cons(X, Y), Z) → ACTIVATE(Z)
ACTIVATE(n__sel(n__from(x0), y1)) → SEL(from(x0), activate(y1))
SEL(s(X), cons(Y, Z)) → ACTIVATE(Z)
ACTIVATE(n__dbl(n__dbl(x0))) → DBL(dbl(activate(x0)))
ACTIVATE(n__dbls(X)) → ACTIVATE(X)
ACTIVATE(n__dbl(X)) → ACTIVATE(X)
SEL(0, cons(X, Y)) → ACTIVATE(X)
DBLS(cons(X, Y)) → ACTIVATE(Y)
SEL(s(n__s(x0)), cons(y1, y2)) → SEL(s(x0), activate(y2))
ACTIVATE(n__sel(x0, y1)) → SEL(x0, activate(y1))
ACTIVATE(n__from(X)) → FROM(X)
ACTIVATE(n__dbls(x0)) → DBLS(x0)
ACTIVATE(n__dbl(n__dbls(x0))) → DBL(dbls(activate(x0)))
ACTIVATE(n__sel(X1, X2)) → ACTIVATE(X2)
INDX(cons(X, Y), Z) → ACTIVATE(X)
ACTIVATE(n__dbl(x0)) → DBL(x0)
SEL(s(n__indx(x0, x1)), cons(y1, y2)) → SEL(indx(activate(x0), x1), activate(y2))
ACTIVATE(n__dbls(n__s(x0))) → DBLS(n__s(x0))
ACTIVATE(n__sel(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__dbls(n__from(x0))) → DBLS(from(x0))
FROM(X) → ACTIVATE(X)
ACTIVATE(n__dbls(n__sel(x0, x1))) → DBLS(sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__sel(x0, x1), y1)) → SEL(sel(activate(x0), activate(x1)), activate(y1))
ACTIVATE(n__dbl(n__indx(x0, x1))) → DBL(indx(activate(x0), x1))
SEL(s(X), cons(Y, Z)) → ACTIVATE(X)
DBLS(cons(X, Y)) → ACTIVATE(X)
DBL(s(X)) → ACTIVATE(X)
ACTIVATE(n__sel(n__s(x0), y1)) → SEL(s(x0), activate(y1))
ACTIVATE(n__dbls(n__dbl(x0))) → DBLS(dbl(activate(x0)))
ACTIVATE(n__dbls(n__indx(x0, x1))) → DBLS(indx(activate(x0), x1))
ACTIVATE(n__dbls(n__dbls(x0))) → DBLS(dbls(activate(x0)))
ACTIVATE(n__indx(n__s(x0), y1)) → INDX(s(x0), y1)
ACTIVATE(n__sel(n__indx(x0, x1), y1)) → SEL(indx(activate(x0), x1), activate(y1))
ACTIVATE(n__dbl(n__s(x0))) → DBL(s(x0))
SEL(s(n__from(x0)), cons(y1, y2)) → SEL(from(x0), activate(y2))
ACTIVATE(n__indx(x0, y1)) → INDX(x0, y1)
ACTIVATE(n__dbl(n__sel(x0, x1))) → DBL(sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__dbls(x0), y1)) → SEL(dbls(activate(x0)), activate(y1))
SEL(s(n__dbls(x0)), cons(y1, y2)) → SEL(dbls(activate(x0)), activate(y2))
SEL(s(n__dbl(x0)), cons(y1, y2)) → SEL(dbl(activate(x0)), activate(y2))
SEL(s(n__sel(x0, x1)), cons(y1, y2)) → SEL(sel(activate(x0), activate(x1)), activate(y2))
ACTIVATE(n__indx(n__dbls(x0), y1)) → INDX(dbls(activate(x0)), y1)
ACTIVATE(n__sel(n__dbl(x0), y1)) → SEL(dbl(activate(x0)), activate(y1))
ACTIVATE(n__indx(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__indx(n__from(x0), y1)) → INDX(from(x0), y1)
ACTIVATE(n__indx(n__dbl(x0), y1)) → INDX(dbl(activate(x0)), y1)
INDX(cons(X, Y), Z) → ACTIVATE(Y)
SEL(s(x0), cons(y1, y2)) → SEL(x0, activate(y2))
ACTIVATE(n__indx(n__indx(x0, x1), y1)) → INDX(indx(activate(x0), x1), y1)
ACTIVATE(n__indx(n__sel(x0, x1), y1)) → INDX(sel(activate(x0), activate(x1)), y1)
The TRS R consists of the following rules:
dbl(0) → 0
dbl(s(X)) → s(n__s(n__dbl(activate(X))))
dbls(nil) → nil
dbls(cons(X, Y)) → cons(n__dbl(activate(X)), n__dbls(activate(Y)))
sel(0, cons(X, Y)) → activate(X)
sel(s(X), cons(Y, Z)) → sel(activate(X), activate(Z))
indx(nil, X) → nil
indx(cons(X, Y), Z) → cons(n__sel(activate(X), activate(Z)), n__indx(activate(Y), activate(Z)))
from(X) → cons(activate(X), n__from(n__s(activate(X))))
s(X) → n__s(X)
dbl(X) → n__dbl(X)
dbls(X) → n__dbls(X)
sel(X1, X2) → n__sel(X1, X2)
indx(X1, X2) → n__indx(X1, X2)
from(X) → n__from(X)
activate(n__s(X)) → s(X)
activate(n__dbl(X)) → dbl(activate(X))
activate(n__dbls(X)) → dbls(activate(X))
activate(n__sel(X1, X2)) → sel(activate(X1), activate(X2))
activate(n__indx(X1, X2)) → indx(activate(X1), X2)
activate(n__from(X)) → from(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
Q DP problem:
The TRS P consists of the following rules:
INDX(cons(X, Y), Z) → ACTIVATE(Z)
ACTIVATE(n__sel(n__from(x0), y1)) → SEL(from(x0), activate(y1))
ACTIVATE(n__dbl(n__dbl(x0))) → DBL(dbl(activate(x0)))
SEL(s(X), cons(Y, Z)) → ACTIVATE(Z)
ACTIVATE(n__dbls(X)) → ACTIVATE(X)
ACTIVATE(n__dbl(X)) → ACTIVATE(X)
SEL(0, cons(X, Y)) → ACTIVATE(X)
DBLS(cons(X, Y)) → ACTIVATE(Y)
SEL(s(n__s(x0)), cons(y1, y2)) → SEL(s(x0), activate(y2))
ACTIVATE(n__sel(x0, y1)) → SEL(x0, activate(y1))
ACTIVATE(n__from(X)) → FROM(X)
ACTIVATE(n__dbls(x0)) → DBLS(x0)
ACTIVATE(n__sel(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__dbl(n__dbls(x0))) → DBL(dbls(activate(x0)))
INDX(cons(X, Y), Z) → ACTIVATE(X)
ACTIVATE(n__dbl(x0)) → DBL(x0)
SEL(s(n__indx(x0, x1)), cons(y1, y2)) → SEL(indx(activate(x0), x1), activate(y2))
ACTIVATE(n__dbls(n__from(x0))) → DBLS(from(x0))
ACTIVATE(n__sel(X1, X2)) → ACTIVATE(X1)
FROM(X) → ACTIVATE(X)
ACTIVATE(n__dbls(n__sel(x0, x1))) → DBLS(sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__sel(x0, x1), y1)) → SEL(sel(activate(x0), activate(x1)), activate(y1))
ACTIVATE(n__dbl(n__indx(x0, x1))) → DBL(indx(activate(x0), x1))
DBLS(cons(X, Y)) → ACTIVATE(X)
SEL(s(X), cons(Y, Z)) → ACTIVATE(X)
DBL(s(X)) → ACTIVATE(X)
ACTIVATE(n__sel(n__s(x0), y1)) → SEL(s(x0), activate(y1))
ACTIVATE(n__dbls(n__dbl(x0))) → DBLS(dbl(activate(x0)))
ACTIVATE(n__dbls(n__indx(x0, x1))) → DBLS(indx(activate(x0), x1))
ACTIVATE(n__dbls(n__dbls(x0))) → DBLS(dbls(activate(x0)))
ACTIVATE(n__indx(n__s(x0), y1)) → INDX(s(x0), y1)
ACTIVATE(n__dbl(n__s(x0))) → DBL(s(x0))
ACTIVATE(n__sel(n__indx(x0, x1), y1)) → SEL(indx(activate(x0), x1), activate(y1))
SEL(s(n__from(x0)), cons(y1, y2)) → SEL(from(x0), activate(y2))
ACTIVATE(n__dbl(n__sel(x0, x1))) → DBL(sel(activate(x0), activate(x1)))
ACTIVATE(n__indx(x0, y1)) → INDX(x0, y1)
ACTIVATE(n__sel(n__dbls(x0), y1)) → SEL(dbls(activate(x0)), activate(y1))
SEL(s(n__dbls(x0)), cons(y1, y2)) → SEL(dbls(activate(x0)), activate(y2))
SEL(s(n__dbl(x0)), cons(y1, y2)) → SEL(dbl(activate(x0)), activate(y2))
SEL(s(n__sel(x0, x1)), cons(y1, y2)) → SEL(sel(activate(x0), activate(x1)), activate(y2))
ACTIVATE(n__indx(n__dbls(x0), y1)) → INDX(dbls(activate(x0)), y1)
ACTIVATE(n__sel(n__dbl(x0), y1)) → SEL(dbl(activate(x0)), activate(y1))
ACTIVATE(n__indx(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__indx(n__from(x0), y1)) → INDX(from(x0), y1)
ACTIVATE(n__indx(n__dbl(x0), y1)) → INDX(dbl(activate(x0)), y1)
INDX(cons(X, Y), Z) → ACTIVATE(Y)
SEL(s(x0), cons(y1, y2)) → SEL(x0, activate(y2))
ACTIVATE(n__indx(n__indx(x0, x1), y1)) → INDX(indx(activate(x0), x1), y1)
ACTIVATE(n__indx(n__sel(x0, x1), y1)) → INDX(sel(activate(x0), activate(x1)), y1)
The TRS R consists of the following rules:
dbl(0) → 0
dbl(s(X)) → s(n__s(n__dbl(activate(X))))
dbls(nil) → nil
dbls(cons(X, Y)) → cons(n__dbl(activate(X)), n__dbls(activate(Y)))
sel(0, cons(X, Y)) → activate(X)
sel(s(X), cons(Y, Z)) → sel(activate(X), activate(Z))
indx(nil, X) → nil
indx(cons(X, Y), Z) → cons(n__sel(activate(X), activate(Z)), n__indx(activate(Y), activate(Z)))
from(X) → cons(activate(X), n__from(n__s(activate(X))))
s(X) → n__s(X)
dbl(X) → n__dbl(X)
dbls(X) → n__dbls(X)
sel(X1, X2) → n__sel(X1, X2)
indx(X1, X2) → n__indx(X1, X2)
from(X) → n__from(X)
activate(n__s(X)) → s(X)
activate(n__dbl(X)) → dbl(activate(X))
activate(n__dbls(X)) → dbls(activate(X))
activate(n__sel(X1, X2)) → sel(activate(X1), activate(X2))
activate(n__indx(X1, X2)) → indx(activate(X1), X2)
activate(n__from(X)) → from(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule ACTIVATE(n__sel(n__dbl(x0), y1)) → SEL(dbl(activate(x0)), activate(y1)) at position [1] we obtained the following new rules:
ACTIVATE(n__sel(n__dbl(y0), x0)) → SEL(dbl(activate(y0)), x0)
ACTIVATE(n__sel(n__dbl(y0), n__from(x0))) → SEL(dbl(activate(y0)), from(x0))
ACTIVATE(n__sel(n__dbl(y0), n__sel(x0, x1))) → SEL(dbl(activate(y0)), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__dbl(y0), n__indx(x0, x1))) → SEL(dbl(activate(y0)), indx(activate(x0), x1))
ACTIVATE(n__sel(n__dbl(y0), n__s(x0))) → SEL(dbl(activate(y0)), s(x0))
ACTIVATE(n__sel(n__dbl(y0), n__dbls(x0))) → SEL(dbl(activate(y0)), dbls(activate(x0)))
ACTIVATE(n__sel(n__dbl(y0), n__dbl(x0))) → SEL(dbl(activate(y0)), dbl(activate(x0)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
Q DP problem:
The TRS P consists of the following rules:
INDX(cons(X, Y), Z) → ACTIVATE(Z)
ACTIVATE(n__sel(n__from(x0), y1)) → SEL(from(x0), activate(y1))
SEL(s(X), cons(Y, Z)) → ACTIVATE(Z)
ACTIVATE(n__dbl(n__dbl(x0))) → DBL(dbl(activate(x0)))
ACTIVATE(n__dbl(X)) → ACTIVATE(X)
ACTIVATE(n__dbls(X)) → ACTIVATE(X)
SEL(0, cons(X, Y)) → ACTIVATE(X)
DBLS(cons(X, Y)) → ACTIVATE(Y)
SEL(s(n__s(x0)), cons(y1, y2)) → SEL(s(x0), activate(y2))
ACTIVATE(n__sel(x0, y1)) → SEL(x0, activate(y1))
ACTIVATE(n__from(X)) → FROM(X)
ACTIVATE(n__dbls(x0)) → DBLS(x0)
ACTIVATE(n__dbl(n__dbls(x0))) → DBL(dbls(activate(x0)))
ACTIVATE(n__sel(X1, X2)) → ACTIVATE(X2)
INDX(cons(X, Y), Z) → ACTIVATE(X)
ACTIVATE(n__dbl(x0)) → DBL(x0)
ACTIVATE(n__sel(n__dbl(y0), n__sel(x0, x1))) → SEL(dbl(activate(y0)), sel(activate(x0), activate(x1)))
SEL(s(n__indx(x0, x1)), cons(y1, y2)) → SEL(indx(activate(x0), x1), activate(y2))
ACTIVATE(n__sel(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__dbls(n__from(x0))) → DBLS(from(x0))
FROM(X) → ACTIVATE(X)
ACTIVATE(n__sel(n__dbl(y0), n__s(x0))) → SEL(dbl(activate(y0)), s(x0))
ACTIVATE(n__dbls(n__sel(x0, x1))) → DBLS(sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__dbl(y0), n__dbls(x0))) → SEL(dbl(activate(y0)), dbls(activate(x0)))
ACTIVATE(n__sel(n__dbl(y0), x0)) → SEL(dbl(activate(y0)), x0)
ACTIVATE(n__sel(n__sel(x0, x1), y1)) → SEL(sel(activate(x0), activate(x1)), activate(y1))
ACTIVATE(n__dbl(n__indx(x0, x1))) → DBL(indx(activate(x0), x1))
SEL(s(X), cons(Y, Z)) → ACTIVATE(X)
DBLS(cons(X, Y)) → ACTIVATE(X)
DBL(s(X)) → ACTIVATE(X)
ACTIVATE(n__sel(n__s(x0), y1)) → SEL(s(x0), activate(y1))
ACTIVATE(n__dbls(n__dbl(x0))) → DBLS(dbl(activate(x0)))
ACTIVATE(n__dbls(n__indx(x0, x1))) → DBLS(indx(activate(x0), x1))
ACTIVATE(n__dbls(n__dbls(x0))) → DBLS(dbls(activate(x0)))
ACTIVATE(n__indx(n__s(x0), y1)) → INDX(s(x0), y1)
ACTIVATE(n__sel(n__indx(x0, x1), y1)) → SEL(indx(activate(x0), x1), activate(y1))
ACTIVATE(n__dbl(n__s(x0))) → DBL(s(x0))
SEL(s(n__from(x0)), cons(y1, y2)) → SEL(from(x0), activate(y2))
ACTIVATE(n__indx(x0, y1)) → INDX(x0, y1)
ACTIVATE(n__dbl(n__sel(x0, x1))) → DBL(sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__dbl(y0), n__dbl(x0))) → SEL(dbl(activate(y0)), dbl(activate(x0)))
ACTIVATE(n__sel(n__dbls(x0), y1)) → SEL(dbls(activate(x0)), activate(y1))
SEL(s(n__dbls(x0)), cons(y1, y2)) → SEL(dbls(activate(x0)), activate(y2))
SEL(s(n__dbl(x0)), cons(y1, y2)) → SEL(dbl(activate(x0)), activate(y2))
ACTIVATE(n__sel(n__dbl(y0), n__from(x0))) → SEL(dbl(activate(y0)), from(x0))
SEL(s(n__sel(x0, x1)), cons(y1, y2)) → SEL(sel(activate(x0), activate(x1)), activate(y2))
ACTIVATE(n__indx(n__dbls(x0), y1)) → INDX(dbls(activate(x0)), y1)
ACTIVATE(n__indx(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__indx(n__from(x0), y1)) → INDX(from(x0), y1)
ACTIVATE(n__indx(n__dbl(x0), y1)) → INDX(dbl(activate(x0)), y1)
INDX(cons(X, Y), Z) → ACTIVATE(Y)
ACTIVATE(n__sel(n__dbl(y0), n__indx(x0, x1))) → SEL(dbl(activate(y0)), indx(activate(x0), x1))
SEL(s(x0), cons(y1, y2)) → SEL(x0, activate(y2))
ACTIVATE(n__indx(n__indx(x0, x1), y1)) → INDX(indx(activate(x0), x1), y1)
ACTIVATE(n__indx(n__sel(x0, x1), y1)) → INDX(sel(activate(x0), activate(x1)), y1)
The TRS R consists of the following rules:
dbl(0) → 0
dbl(s(X)) → s(n__s(n__dbl(activate(X))))
dbls(nil) → nil
dbls(cons(X, Y)) → cons(n__dbl(activate(X)), n__dbls(activate(Y)))
sel(0, cons(X, Y)) → activate(X)
sel(s(X), cons(Y, Z)) → sel(activate(X), activate(Z))
indx(nil, X) → nil
indx(cons(X, Y), Z) → cons(n__sel(activate(X), activate(Z)), n__indx(activate(Y), activate(Z)))
from(X) → cons(activate(X), n__from(n__s(activate(X))))
s(X) → n__s(X)
dbl(X) → n__dbl(X)
dbls(X) → n__dbls(X)
sel(X1, X2) → n__sel(X1, X2)
indx(X1, X2) → n__indx(X1, X2)
from(X) → n__from(X)
activate(n__s(X)) → s(X)
activate(n__dbl(X)) → dbl(activate(X))
activate(n__dbls(X)) → dbls(activate(X))
activate(n__sel(X1, X2)) → sel(activate(X1), activate(X2))
activate(n__indx(X1, X2)) → indx(activate(X1), X2)
activate(n__from(X)) → from(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule ACTIVATE(n__sel(n__sel(x0, x1), y1)) → SEL(sel(activate(x0), activate(x1)), activate(y1)) at position [1] we obtained the following new rules:
ACTIVATE(n__sel(n__sel(y0, y1), n__dbls(x0))) → SEL(sel(activate(y0), activate(y1)), dbls(activate(x0)))
ACTIVATE(n__sel(n__sel(y0, y1), n__from(x0))) → SEL(sel(activate(y0), activate(y1)), from(x0))
ACTIVATE(n__sel(n__sel(y0, y1), n__indx(x0, x1))) → SEL(sel(activate(y0), activate(y1)), indx(activate(x0), x1))
ACTIVATE(n__sel(n__sel(y0, y1), n__dbl(x0))) → SEL(sel(activate(y0), activate(y1)), dbl(activate(x0)))
ACTIVATE(n__sel(n__sel(y0, y1), x0)) → SEL(sel(activate(y0), activate(y1)), x0)
ACTIVATE(n__sel(n__sel(y0, y1), n__s(x0))) → SEL(sel(activate(y0), activate(y1)), s(x0))
ACTIVATE(n__sel(n__sel(y0, y1), n__sel(x0, x1))) → SEL(sel(activate(y0), activate(y1)), sel(activate(x0), activate(x1)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
Q DP problem:
The TRS P consists of the following rules:
INDX(cons(X, Y), Z) → ACTIVATE(Z)
ACTIVATE(n__sel(n__from(x0), y1)) → SEL(from(x0), activate(y1))
ACTIVATE(n__dbl(n__dbl(x0))) → DBL(dbl(activate(x0)))
SEL(s(X), cons(Y, Z)) → ACTIVATE(Z)
ACTIVATE(n__dbls(X)) → ACTIVATE(X)
ACTIVATE(n__dbl(X)) → ACTIVATE(X)
SEL(0, cons(X, Y)) → ACTIVATE(X)
DBLS(cons(X, Y)) → ACTIVATE(Y)
ACTIVATE(n__sel(n__sel(y0, y1), n__s(x0))) → SEL(sel(activate(y0), activate(y1)), s(x0))
SEL(s(n__s(x0)), cons(y1, y2)) → SEL(s(x0), activate(y2))
ACTIVATE(n__sel(x0, y1)) → SEL(x0, activate(y1))
ACTIVATE(n__from(X)) → FROM(X)
ACTIVATE(n__dbls(x0)) → DBLS(x0)
ACTIVATE(n__sel(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__dbl(n__dbls(x0))) → DBL(dbls(activate(x0)))
ACTIVATE(n__sel(n__sel(y0, y1), n__from(x0))) → SEL(sel(activate(y0), activate(y1)), from(x0))
INDX(cons(X, Y), Z) → ACTIVATE(X)
ACTIVATE(n__dbl(x0)) → DBL(x0)
ACTIVATE(n__sel(n__sel(y0, y1), n__dbl(x0))) → SEL(sel(activate(y0), activate(y1)), dbl(activate(x0)))
SEL(s(n__indx(x0, x1)), cons(y1, y2)) → SEL(indx(activate(x0), x1), activate(y2))
ACTIVATE(n__sel(n__dbl(y0), n__sel(x0, x1))) → SEL(dbl(activate(y0)), sel(activate(x0), activate(x1)))
ACTIVATE(n__dbls(n__from(x0))) → DBLS(from(x0))
ACTIVATE(n__sel(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__sel(n__sel(y0, y1), x0)) → SEL(sel(activate(y0), activate(y1)), x0)
FROM(X) → ACTIVATE(X)
ACTIVATE(n__dbls(n__sel(x0, x1))) → DBLS(sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__dbl(y0), n__s(x0))) → SEL(dbl(activate(y0)), s(x0))
ACTIVATE(n__sel(n__dbl(y0), n__dbls(x0))) → SEL(dbl(activate(y0)), dbls(activate(x0)))
ACTIVATE(n__sel(n__dbl(y0), x0)) → SEL(dbl(activate(y0)), x0)
ACTIVATE(n__dbl(n__indx(x0, x1))) → DBL(indx(activate(x0), x1))
DBLS(cons(X, Y)) → ACTIVATE(X)
SEL(s(X), cons(Y, Z)) → ACTIVATE(X)
DBL(s(X)) → ACTIVATE(X)
ACTIVATE(n__sel(n__sel(y0, y1), n__sel(x0, x1))) → SEL(sel(activate(y0), activate(y1)), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__s(x0), y1)) → SEL(s(x0), activate(y1))
ACTIVATE(n__dbls(n__dbl(x0))) → DBLS(dbl(activate(x0)))
ACTIVATE(n__dbls(n__indx(x0, x1))) → DBLS(indx(activate(x0), x1))
ACTIVATE(n__dbls(n__dbls(x0))) → DBLS(dbls(activate(x0)))
ACTIVATE(n__sel(n__sel(y0, y1), n__indx(x0, x1))) → SEL(sel(activate(y0), activate(y1)), indx(activate(x0), x1))
ACTIVATE(n__indx(n__s(x0), y1)) → INDX(s(x0), y1)
ACTIVATE(n__dbl(n__s(x0))) → DBL(s(x0))
ACTIVATE(n__sel(n__indx(x0, x1), y1)) → SEL(indx(activate(x0), x1), activate(y1))
SEL(s(n__from(x0)), cons(y1, y2)) → SEL(from(x0), activate(y2))
ACTIVATE(n__dbl(n__sel(x0, x1))) → DBL(sel(activate(x0), activate(x1)))
ACTIVATE(n__indx(x0, y1)) → INDX(x0, y1)
ACTIVATE(n__sel(n__dbls(x0), y1)) → SEL(dbls(activate(x0)), activate(y1))
ACTIVATE(n__sel(n__dbl(y0), n__dbl(x0))) → SEL(dbl(activate(y0)), dbl(activate(x0)))
SEL(s(n__dbls(x0)), cons(y1, y2)) → SEL(dbls(activate(x0)), activate(y2))
ACTIVATE(n__sel(n__sel(y0, y1), n__dbls(x0))) → SEL(sel(activate(y0), activate(y1)), dbls(activate(x0)))
SEL(s(n__dbl(x0)), cons(y1, y2)) → SEL(dbl(activate(x0)), activate(y2))
ACTIVATE(n__sel(n__dbl(y0), n__from(x0))) → SEL(dbl(activate(y0)), from(x0))
SEL(s(n__sel(x0, x1)), cons(y1, y2)) → SEL(sel(activate(x0), activate(x1)), activate(y2))
ACTIVATE(n__indx(n__dbls(x0), y1)) → INDX(dbls(activate(x0)), y1)
ACTIVATE(n__indx(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__indx(n__from(x0), y1)) → INDX(from(x0), y1)
ACTIVATE(n__indx(n__dbl(x0), y1)) → INDX(dbl(activate(x0)), y1)
INDX(cons(X, Y), Z) → ACTIVATE(Y)
SEL(s(x0), cons(y1, y2)) → SEL(x0, activate(y2))
ACTIVATE(n__sel(n__dbl(y0), n__indx(x0, x1))) → SEL(dbl(activate(y0)), indx(activate(x0), x1))
ACTIVATE(n__indx(n__indx(x0, x1), y1)) → INDX(indx(activate(x0), x1), y1)
ACTIVATE(n__indx(n__sel(x0, x1), y1)) → INDX(sel(activate(x0), activate(x1)), y1)
The TRS R consists of the following rules:
dbl(0) → 0
dbl(s(X)) → s(n__s(n__dbl(activate(X))))
dbls(nil) → nil
dbls(cons(X, Y)) → cons(n__dbl(activate(X)), n__dbls(activate(Y)))
sel(0, cons(X, Y)) → activate(X)
sel(s(X), cons(Y, Z)) → sel(activate(X), activate(Z))
indx(nil, X) → nil
indx(cons(X, Y), Z) → cons(n__sel(activate(X), activate(Z)), n__indx(activate(Y), activate(Z)))
from(X) → cons(activate(X), n__from(n__s(activate(X))))
s(X) → n__s(X)
dbl(X) → n__dbl(X)
dbls(X) → n__dbls(X)
sel(X1, X2) → n__sel(X1, X2)
indx(X1, X2) → n__indx(X1, X2)
from(X) → n__from(X)
activate(n__s(X)) → s(X)
activate(n__dbl(X)) → dbl(activate(X))
activate(n__dbls(X)) → dbls(activate(X))
activate(n__sel(X1, X2)) → sel(activate(X1), activate(X2))
activate(n__indx(X1, X2)) → indx(activate(X1), X2)
activate(n__from(X)) → from(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule ACTIVATE(n__sel(n__indx(x0, x1), y1)) → SEL(indx(activate(x0), x1), activate(y1)) at position [1] we obtained the following new rules:
ACTIVATE(n__sel(n__indx(y0, y1), n__indx(x0, x1))) → SEL(indx(activate(y0), y1), indx(activate(x0), x1))
ACTIVATE(n__sel(n__indx(y0, y1), n__from(x0))) → SEL(indx(activate(y0), y1), from(x0))
ACTIVATE(n__sel(n__indx(y0, y1), n__s(x0))) → SEL(indx(activate(y0), y1), s(x0))
ACTIVATE(n__sel(n__indx(y0, y1), n__sel(x0, x1))) → SEL(indx(activate(y0), y1), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__indx(y0, y1), n__dbls(x0))) → SEL(indx(activate(y0), y1), dbls(activate(x0)))
ACTIVATE(n__sel(n__indx(y0, y1), n__dbl(x0))) → SEL(indx(activate(y0), y1), dbl(activate(x0)))
ACTIVATE(n__sel(n__indx(y0, y1), x0)) → SEL(indx(activate(y0), y1), x0)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
Q DP problem:
The TRS P consists of the following rules:
INDX(cons(X, Y), Z) → ACTIVATE(Z)
ACTIVATE(n__sel(n__from(x0), y1)) → SEL(from(x0), activate(y1))
SEL(s(X), cons(Y, Z)) → ACTIVATE(Z)
ACTIVATE(n__dbl(n__dbl(x0))) → DBL(dbl(activate(x0)))
ACTIVATE(n__sel(n__indx(y0, y1), n__dbl(x0))) → SEL(indx(activate(y0), y1), dbl(activate(x0)))
ACTIVATE(n__dbl(X)) → ACTIVATE(X)
ACTIVATE(n__dbls(X)) → ACTIVATE(X)
SEL(0, cons(X, Y)) → ACTIVATE(X)
DBLS(cons(X, Y)) → ACTIVATE(Y)
ACTIVATE(n__sel(n__sel(y0, y1), n__s(x0))) → SEL(sel(activate(y0), activate(y1)), s(x0))
SEL(s(n__s(x0)), cons(y1, y2)) → SEL(s(x0), activate(y2))
ACTIVATE(n__sel(x0, y1)) → SEL(x0, activate(y1))
ACTIVATE(n__from(X)) → FROM(X)
ACTIVATE(n__dbls(x0)) → DBLS(x0)
ACTIVATE(n__sel(n__indx(y0, y1), n__indx(x0, x1))) → SEL(indx(activate(y0), y1), indx(activate(x0), x1))
ACTIVATE(n__dbl(n__dbls(x0))) → DBL(dbls(activate(x0)))
ACTIVATE(n__sel(X1, X2)) → ACTIVATE(X2)
INDX(cons(X, Y), Z) → ACTIVATE(X)
ACTIVATE(n__sel(n__sel(y0, y1), n__from(x0))) → SEL(sel(activate(y0), activate(y1)), from(x0))
ACTIVATE(n__dbl(x0)) → DBL(x0)
ACTIVATE(n__sel(n__dbl(y0), n__sel(x0, x1))) → SEL(dbl(activate(y0)), sel(activate(x0), activate(x1)))
SEL(s(n__indx(x0, x1)), cons(y1, y2)) → SEL(indx(activate(x0), x1), activate(y2))
ACTIVATE(n__sel(n__sel(y0, y1), n__dbl(x0))) → SEL(sel(activate(y0), activate(y1)), dbl(activate(x0)))
ACTIVATE(n__sel(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__dbls(n__from(x0))) → DBLS(from(x0))
ACTIVATE(n__sel(n__sel(y0, y1), x0)) → SEL(sel(activate(y0), activate(y1)), x0)
FROM(X) → ACTIVATE(X)
ACTIVATE(n__sel(n__dbl(y0), n__s(x0))) → SEL(dbl(activate(y0)), s(x0))
ACTIVATE(n__dbls(n__sel(x0, x1))) → DBLS(sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__dbl(y0), n__dbls(x0))) → SEL(dbl(activate(y0)), dbls(activate(x0)))
ACTIVATE(n__sel(n__dbl(y0), x0)) → SEL(dbl(activate(y0)), x0)
ACTIVATE(n__dbl(n__indx(x0, x1))) → DBL(indx(activate(x0), x1))
SEL(s(X), cons(Y, Z)) → ACTIVATE(X)
DBLS(cons(X, Y)) → ACTIVATE(X)
ACTIVATE(n__sel(n__indx(y0, y1), n__s(x0))) → SEL(indx(activate(y0), y1), s(x0))
DBL(s(X)) → ACTIVATE(X)
ACTIVATE(n__sel(n__indx(y0, y1), n__sel(x0, x1))) → SEL(indx(activate(y0), y1), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__s(x0), y1)) → SEL(s(x0), activate(y1))
ACTIVATE(n__sel(n__sel(y0, y1), n__sel(x0, x1))) → SEL(sel(activate(y0), activate(y1)), sel(activate(x0), activate(x1)))
ACTIVATE(n__dbls(n__dbl(x0))) → DBLS(dbl(activate(x0)))
ACTIVATE(n__dbls(n__indx(x0, x1))) → DBLS(indx(activate(x0), x1))
ACTIVATE(n__dbls(n__dbls(x0))) → DBLS(dbls(activate(x0)))
ACTIVATE(n__sel(n__sel(y0, y1), n__indx(x0, x1))) → SEL(sel(activate(y0), activate(y1)), indx(activate(x0), x1))
ACTIVATE(n__sel(n__indx(y0, y1), x0)) → SEL(indx(activate(y0), y1), x0)
ACTIVATE(n__indx(n__s(x0), y1)) → INDX(s(x0), y1)
ACTIVATE(n__dbl(n__s(x0))) → DBL(s(x0))
ACTIVATE(n__sel(n__indx(y0, y1), n__from(x0))) → SEL(indx(activate(y0), y1), from(x0))
SEL(s(n__from(x0)), cons(y1, y2)) → SEL(from(x0), activate(y2))
ACTIVATE(n__indx(x0, y1)) → INDX(x0, y1)
ACTIVATE(n__dbl(n__sel(x0, x1))) → DBL(sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__dbl(y0), n__dbl(x0))) → SEL(dbl(activate(y0)), dbl(activate(x0)))
ACTIVATE(n__sel(n__dbls(x0), y1)) → SEL(dbls(activate(x0)), activate(y1))
SEL(s(n__dbls(x0)), cons(y1, y2)) → SEL(dbls(activate(x0)), activate(y2))
SEL(s(n__dbl(x0)), cons(y1, y2)) → SEL(dbl(activate(x0)), activate(y2))
ACTIVATE(n__sel(n__sel(y0, y1), n__dbls(x0))) → SEL(sel(activate(y0), activate(y1)), dbls(activate(x0)))
ACTIVATE(n__sel(n__indx(y0, y1), n__dbls(x0))) → SEL(indx(activate(y0), y1), dbls(activate(x0)))
ACTIVATE(n__sel(n__dbl(y0), n__from(x0))) → SEL(dbl(activate(y0)), from(x0))
SEL(s(n__sel(x0, x1)), cons(y1, y2)) → SEL(sel(activate(x0), activate(x1)), activate(y2))
ACTIVATE(n__indx(n__dbls(x0), y1)) → INDX(dbls(activate(x0)), y1)
ACTIVATE(n__indx(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__indx(n__from(x0), y1)) → INDX(from(x0), y1)
ACTIVATE(n__indx(n__dbl(x0), y1)) → INDX(dbl(activate(x0)), y1)
INDX(cons(X, Y), Z) → ACTIVATE(Y)
ACTIVATE(n__sel(n__dbl(y0), n__indx(x0, x1))) → SEL(dbl(activate(y0)), indx(activate(x0), x1))
SEL(s(x0), cons(y1, y2)) → SEL(x0, activate(y2))
ACTIVATE(n__indx(n__indx(x0, x1), y1)) → INDX(indx(activate(x0), x1), y1)
ACTIVATE(n__indx(n__sel(x0, x1), y1)) → INDX(sel(activate(x0), activate(x1)), y1)
The TRS R consists of the following rules:
dbl(0) → 0
dbl(s(X)) → s(n__s(n__dbl(activate(X))))
dbls(nil) → nil
dbls(cons(X, Y)) → cons(n__dbl(activate(X)), n__dbls(activate(Y)))
sel(0, cons(X, Y)) → activate(X)
sel(s(X), cons(Y, Z)) → sel(activate(X), activate(Z))
indx(nil, X) → nil
indx(cons(X, Y), Z) → cons(n__sel(activate(X), activate(Z)), n__indx(activate(Y), activate(Z)))
from(X) → cons(activate(X), n__from(n__s(activate(X))))
s(X) → n__s(X)
dbl(X) → n__dbl(X)
dbls(X) → n__dbls(X)
sel(X1, X2) → n__sel(X1, X2)
indx(X1, X2) → n__indx(X1, X2)
from(X) → n__from(X)
activate(n__s(X)) → s(X)
activate(n__dbl(X)) → dbl(activate(X))
activate(n__dbls(X)) → dbls(activate(X))
activate(n__sel(X1, X2)) → sel(activate(X1), activate(X2))
activate(n__indx(X1, X2)) → indx(activate(X1), X2)
activate(n__from(X)) → from(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule ACTIVATE(n__sel(n__from(x0), y1)) → SEL(from(x0), activate(y1)) at position [0] we obtained the following new rules:
ACTIVATE(n__sel(n__from(x0), y1)) → SEL(n__from(x0), activate(y1))
ACTIVATE(n__sel(n__from(x0), y1)) → SEL(cons(activate(x0), n__from(n__s(activate(x0)))), activate(y1))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
INDX(cons(X, Y), Z) → ACTIVATE(Z)
ACTIVATE(n__sel(n__from(x0), y1)) → SEL(n__from(x0), activate(y1))
ACTIVATE(n__dbl(n__dbl(x0))) → DBL(dbl(activate(x0)))
SEL(s(X), cons(Y, Z)) → ACTIVATE(Z)
ACTIVATE(n__sel(n__indx(y0, y1), n__dbl(x0))) → SEL(indx(activate(y0), y1), dbl(activate(x0)))
ACTIVATE(n__dbls(X)) → ACTIVATE(X)
ACTIVATE(n__dbl(X)) → ACTIVATE(X)
SEL(0, cons(X, Y)) → ACTIVATE(X)
DBLS(cons(X, Y)) → ACTIVATE(Y)
ACTIVATE(n__sel(n__sel(y0, y1), n__s(x0))) → SEL(sel(activate(y0), activate(y1)), s(x0))
SEL(s(n__s(x0)), cons(y1, y2)) → SEL(s(x0), activate(y2))
ACTIVATE(n__sel(x0, y1)) → SEL(x0, activate(y1))
ACTIVATE(n__from(X)) → FROM(X)
ACTIVATE(n__dbls(x0)) → DBLS(x0)
ACTIVATE(n__sel(n__indx(y0, y1), n__indx(x0, x1))) → SEL(indx(activate(y0), y1), indx(activate(x0), x1))
ACTIVATE(n__sel(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__dbl(n__dbls(x0))) → DBL(dbls(activate(x0)))
ACTIVATE(n__sel(n__sel(y0, y1), n__from(x0))) → SEL(sel(activate(y0), activate(y1)), from(x0))
INDX(cons(X, Y), Z) → ACTIVATE(X)
ACTIVATE(n__dbl(x0)) → DBL(x0)
ACTIVATE(n__sel(n__sel(y0, y1), n__dbl(x0))) → SEL(sel(activate(y0), activate(y1)), dbl(activate(x0)))
SEL(s(n__indx(x0, x1)), cons(y1, y2)) → SEL(indx(activate(x0), x1), activate(y2))
ACTIVATE(n__sel(n__dbl(y0), n__sel(x0, x1))) → SEL(dbl(activate(y0)), sel(activate(x0), activate(x1)))
ACTIVATE(n__dbls(n__from(x0))) → DBLS(from(x0))
ACTIVATE(n__sel(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__sel(n__sel(y0, y1), x0)) → SEL(sel(activate(y0), activate(y1)), x0)
FROM(X) → ACTIVATE(X)
ACTIVATE(n__dbls(n__sel(x0, x1))) → DBLS(sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__dbl(y0), n__s(x0))) → SEL(dbl(activate(y0)), s(x0))
ACTIVATE(n__sel(n__dbl(y0), n__dbls(x0))) → SEL(dbl(activate(y0)), dbls(activate(x0)))
ACTIVATE(n__sel(n__dbl(y0), x0)) → SEL(dbl(activate(y0)), x0)
ACTIVATE(n__dbl(n__indx(x0, x1))) → DBL(indx(activate(x0), x1))
DBLS(cons(X, Y)) → ACTIVATE(X)
SEL(s(X), cons(Y, Z)) → ACTIVATE(X)
DBL(s(X)) → ACTIVATE(X)
ACTIVATE(n__sel(n__indx(y0, y1), n__s(x0))) → SEL(indx(activate(y0), y1), s(x0))
ACTIVATE(n__sel(n__indx(y0, y1), n__sel(x0, x1))) → SEL(indx(activate(y0), y1), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__sel(y0, y1), n__sel(x0, x1))) → SEL(sel(activate(y0), activate(y1)), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__s(x0), y1)) → SEL(s(x0), activate(y1))
ACTIVATE(n__dbls(n__dbl(x0))) → DBLS(dbl(activate(x0)))
ACTIVATE(n__dbls(n__indx(x0, x1))) → DBLS(indx(activate(x0), x1))
ACTIVATE(n__dbls(n__dbls(x0))) → DBLS(dbls(activate(x0)))
ACTIVATE(n__sel(n__sel(y0, y1), n__indx(x0, x1))) → SEL(sel(activate(y0), activate(y1)), indx(activate(x0), x1))
ACTIVATE(n__sel(n__indx(y0, y1), x0)) → SEL(indx(activate(y0), y1), x0)
ACTIVATE(n__indx(n__s(x0), y1)) → INDX(s(x0), y1)
ACTIVATE(n__dbl(n__s(x0))) → DBL(s(x0))
ACTIVATE(n__sel(n__indx(y0, y1), n__from(x0))) → SEL(indx(activate(y0), y1), from(x0))
SEL(s(n__from(x0)), cons(y1, y2)) → SEL(from(x0), activate(y2))
ACTIVATE(n__dbl(n__sel(x0, x1))) → DBL(sel(activate(x0), activate(x1)))
ACTIVATE(n__indx(x0, y1)) → INDX(x0, y1)
ACTIVATE(n__sel(n__dbls(x0), y1)) → SEL(dbls(activate(x0)), activate(y1))
ACTIVATE(n__sel(n__dbl(y0), n__dbl(x0))) → SEL(dbl(activate(y0)), dbl(activate(x0)))
SEL(s(n__dbls(x0)), cons(y1, y2)) → SEL(dbls(activate(x0)), activate(y2))
ACTIVATE(n__sel(n__sel(y0, y1), n__dbls(x0))) → SEL(sel(activate(y0), activate(y1)), dbls(activate(x0)))
SEL(s(n__dbl(x0)), cons(y1, y2)) → SEL(dbl(activate(x0)), activate(y2))
ACTIVATE(n__sel(n__indx(y0, y1), n__dbls(x0))) → SEL(indx(activate(y0), y1), dbls(activate(x0)))
ACTIVATE(n__sel(n__dbl(y0), n__from(x0))) → SEL(dbl(activate(y0)), from(x0))
SEL(s(n__sel(x0, x1)), cons(y1, y2)) → SEL(sel(activate(x0), activate(x1)), activate(y2))
ACTIVATE(n__indx(n__dbls(x0), y1)) → INDX(dbls(activate(x0)), y1)
ACTIVATE(n__indx(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__sel(n__from(x0), y1)) → SEL(cons(activate(x0), n__from(n__s(activate(x0)))), activate(y1))
ACTIVATE(n__indx(n__from(x0), y1)) → INDX(from(x0), y1)
ACTIVATE(n__indx(n__dbl(x0), y1)) → INDX(dbl(activate(x0)), y1)
INDX(cons(X, Y), Z) → ACTIVATE(Y)
SEL(s(x0), cons(y1, y2)) → SEL(x0, activate(y2))
ACTIVATE(n__sel(n__dbl(y0), n__indx(x0, x1))) → SEL(dbl(activate(y0)), indx(activate(x0), x1))
ACTIVATE(n__indx(n__indx(x0, x1), y1)) → INDX(indx(activate(x0), x1), y1)
ACTIVATE(n__indx(n__sel(x0, x1), y1)) → INDX(sel(activate(x0), activate(x1)), y1)
The TRS R consists of the following rules:
dbl(0) → 0
dbl(s(X)) → s(n__s(n__dbl(activate(X))))
dbls(nil) → nil
dbls(cons(X, Y)) → cons(n__dbl(activate(X)), n__dbls(activate(Y)))
sel(0, cons(X, Y)) → activate(X)
sel(s(X), cons(Y, Z)) → sel(activate(X), activate(Z))
indx(nil, X) → nil
indx(cons(X, Y), Z) → cons(n__sel(activate(X), activate(Z)), n__indx(activate(Y), activate(Z)))
from(X) → cons(activate(X), n__from(n__s(activate(X))))
s(X) → n__s(X)
dbl(X) → n__dbl(X)
dbls(X) → n__dbls(X)
sel(X1, X2) → n__sel(X1, X2)
indx(X1, X2) → n__indx(X1, X2)
from(X) → n__from(X)
activate(n__s(X)) → s(X)
activate(n__dbl(X)) → dbl(activate(X))
activate(n__dbls(X)) → dbls(activate(X))
activate(n__sel(X1, X2)) → sel(activate(X1), activate(X2))
activate(n__indx(X1, X2)) → indx(activate(X1), X2)
activate(n__from(X)) → from(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 2 less nodes.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
Q DP problem:
The TRS P consists of the following rules:
INDX(cons(X, Y), Z) → ACTIVATE(Z)
ACTIVATE(n__dbl(n__dbl(x0))) → DBL(dbl(activate(x0)))
SEL(s(X), cons(Y, Z)) → ACTIVATE(Z)
ACTIVATE(n__sel(n__indx(y0, y1), n__dbl(x0))) → SEL(indx(activate(y0), y1), dbl(activate(x0)))
ACTIVATE(n__dbl(X)) → ACTIVATE(X)
ACTIVATE(n__dbls(X)) → ACTIVATE(X)
SEL(0, cons(X, Y)) → ACTIVATE(X)
DBLS(cons(X, Y)) → ACTIVATE(Y)
ACTIVATE(n__sel(n__sel(y0, y1), n__s(x0))) → SEL(sel(activate(y0), activate(y1)), s(x0))
SEL(s(n__s(x0)), cons(y1, y2)) → SEL(s(x0), activate(y2))
ACTIVATE(n__sel(x0, y1)) → SEL(x0, activate(y1))
ACTIVATE(n__from(X)) → FROM(X)
ACTIVATE(n__dbls(x0)) → DBLS(x0)
ACTIVATE(n__sel(n__indx(y0, y1), n__indx(x0, x1))) → SEL(indx(activate(y0), y1), indx(activate(x0), x1))
ACTIVATE(n__sel(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__dbl(n__dbls(x0))) → DBL(dbls(activate(x0)))
ACTIVATE(n__sel(n__sel(y0, y1), n__from(x0))) → SEL(sel(activate(y0), activate(y1)), from(x0))
INDX(cons(X, Y), Z) → ACTIVATE(X)
ACTIVATE(n__dbl(x0)) → DBL(x0)
ACTIVATE(n__sel(n__sel(y0, y1), n__dbl(x0))) → SEL(sel(activate(y0), activate(y1)), dbl(activate(x0)))
SEL(s(n__indx(x0, x1)), cons(y1, y2)) → SEL(indx(activate(x0), x1), activate(y2))
ACTIVATE(n__sel(n__dbl(y0), n__sel(x0, x1))) → SEL(dbl(activate(y0)), sel(activate(x0), activate(x1)))
ACTIVATE(n__dbls(n__from(x0))) → DBLS(from(x0))
ACTIVATE(n__sel(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__sel(n__sel(y0, y1), x0)) → SEL(sel(activate(y0), activate(y1)), x0)
FROM(X) → ACTIVATE(X)
ACTIVATE(n__sel(n__dbl(y0), n__s(x0))) → SEL(dbl(activate(y0)), s(x0))
ACTIVATE(n__dbls(n__sel(x0, x1))) → DBLS(sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__dbl(y0), n__dbls(x0))) → SEL(dbl(activate(y0)), dbls(activate(x0)))
ACTIVATE(n__sel(n__dbl(y0), x0)) → SEL(dbl(activate(y0)), x0)
ACTIVATE(n__dbl(n__indx(x0, x1))) → DBL(indx(activate(x0), x1))
DBLS(cons(X, Y)) → ACTIVATE(X)
SEL(s(X), cons(Y, Z)) → ACTIVATE(X)
ACTIVATE(n__sel(n__indx(y0, y1), n__s(x0))) → SEL(indx(activate(y0), y1), s(x0))
DBL(s(X)) → ACTIVATE(X)
ACTIVATE(n__sel(n__indx(y0, y1), n__sel(x0, x1))) → SEL(indx(activate(y0), y1), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__sel(y0, y1), n__sel(x0, x1))) → SEL(sel(activate(y0), activate(y1)), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__s(x0), y1)) → SEL(s(x0), activate(y1))
ACTIVATE(n__dbls(n__dbl(x0))) → DBLS(dbl(activate(x0)))
ACTIVATE(n__dbls(n__indx(x0, x1))) → DBLS(indx(activate(x0), x1))
ACTIVATE(n__dbls(n__dbls(x0))) → DBLS(dbls(activate(x0)))
ACTIVATE(n__sel(n__sel(y0, y1), n__indx(x0, x1))) → SEL(sel(activate(y0), activate(y1)), indx(activate(x0), x1))
ACTIVATE(n__sel(n__indx(y0, y1), x0)) → SEL(indx(activate(y0), y1), x0)
ACTIVATE(n__indx(n__s(x0), y1)) → INDX(s(x0), y1)
ACTIVATE(n__dbl(n__s(x0))) → DBL(s(x0))
ACTIVATE(n__sel(n__indx(y0, y1), n__from(x0))) → SEL(indx(activate(y0), y1), from(x0))
SEL(s(n__from(x0)), cons(y1, y2)) → SEL(from(x0), activate(y2))
ACTIVATE(n__dbl(n__sel(x0, x1))) → DBL(sel(activate(x0), activate(x1)))
ACTIVATE(n__indx(x0, y1)) → INDX(x0, y1)
ACTIVATE(n__sel(n__dbl(y0), n__dbl(x0))) → SEL(dbl(activate(y0)), dbl(activate(x0)))
ACTIVATE(n__sel(n__dbls(x0), y1)) → SEL(dbls(activate(x0)), activate(y1))
SEL(s(n__dbls(x0)), cons(y1, y2)) → SEL(dbls(activate(x0)), activate(y2))
ACTIVATE(n__sel(n__sel(y0, y1), n__dbls(x0))) → SEL(sel(activate(y0), activate(y1)), dbls(activate(x0)))
SEL(s(n__dbl(x0)), cons(y1, y2)) → SEL(dbl(activate(x0)), activate(y2))
ACTIVATE(n__sel(n__indx(y0, y1), n__dbls(x0))) → SEL(indx(activate(y0), y1), dbls(activate(x0)))
ACTIVATE(n__sel(n__dbl(y0), n__from(x0))) → SEL(dbl(activate(y0)), from(x0))
SEL(s(n__sel(x0, x1)), cons(y1, y2)) → SEL(sel(activate(x0), activate(x1)), activate(y2))
ACTIVATE(n__indx(n__dbls(x0), y1)) → INDX(dbls(activate(x0)), y1)
ACTIVATE(n__indx(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__indx(n__from(x0), y1)) → INDX(from(x0), y1)
ACTIVATE(n__indx(n__dbl(x0), y1)) → INDX(dbl(activate(x0)), y1)
INDX(cons(X, Y), Z) → ACTIVATE(Y)
SEL(s(x0), cons(y1, y2)) → SEL(x0, activate(y2))
ACTIVATE(n__sel(n__dbl(y0), n__indx(x0, x1))) → SEL(dbl(activate(y0)), indx(activate(x0), x1))
ACTIVATE(n__indx(n__indx(x0, x1), y1)) → INDX(indx(activate(x0), x1), y1)
ACTIVATE(n__indx(n__sel(x0, x1), y1)) → INDX(sel(activate(x0), activate(x1)), y1)
The TRS R consists of the following rules:
dbl(0) → 0
dbl(s(X)) → s(n__s(n__dbl(activate(X))))
dbls(nil) → nil
dbls(cons(X, Y)) → cons(n__dbl(activate(X)), n__dbls(activate(Y)))
sel(0, cons(X, Y)) → activate(X)
sel(s(X), cons(Y, Z)) → sel(activate(X), activate(Z))
indx(nil, X) → nil
indx(cons(X, Y), Z) → cons(n__sel(activate(X), activate(Z)), n__indx(activate(Y), activate(Z)))
from(X) → cons(activate(X), n__from(n__s(activate(X))))
s(X) → n__s(X)
dbl(X) → n__dbl(X)
dbls(X) → n__dbls(X)
sel(X1, X2) → n__sel(X1, X2)
indx(X1, X2) → n__indx(X1, X2)
from(X) → n__from(X)
activate(n__s(X)) → s(X)
activate(n__dbl(X)) → dbl(activate(X))
activate(n__dbls(X)) → dbls(activate(X))
activate(n__sel(X1, X2)) → sel(activate(X1), activate(X2))
activate(n__indx(X1, X2)) → indx(activate(X1), X2)
activate(n__from(X)) → from(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule ACTIVATE(n__sel(x0, y1)) → SEL(x0, activate(y1)) at position [1] we obtained the following new rules:
ACTIVATE(n__sel(y0, n__dbl(x0))) → SEL(y0, dbl(activate(x0)))
ACTIVATE(n__sel(y0, n__dbls(x0))) → SEL(y0, dbls(activate(x0)))
ACTIVATE(n__sel(y0, x0)) → SEL(y0, x0)
ACTIVATE(n__sel(y0, n__s(x0))) → SEL(y0, s(x0))
ACTIVATE(n__sel(y0, n__indx(x0, x1))) → SEL(y0, indx(activate(x0), x1))
ACTIVATE(n__sel(y0, n__from(x0))) → SEL(y0, from(x0))
ACTIVATE(n__sel(y0, n__sel(x0, x1))) → SEL(y0, sel(activate(x0), activate(x1)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
Q DP problem:
The TRS P consists of the following rules:
INDX(cons(X, Y), Z) → ACTIVATE(Z)
SEL(s(X), cons(Y, Z)) → ACTIVATE(Z)
ACTIVATE(n__dbl(n__dbl(x0))) → DBL(dbl(activate(x0)))
ACTIVATE(n__sel(n__indx(y0, y1), n__dbl(x0))) → SEL(indx(activate(y0), y1), dbl(activate(x0)))
ACTIVATE(n__dbls(X)) → ACTIVATE(X)
ACTIVATE(n__dbl(X)) → ACTIVATE(X)
SEL(0, cons(X, Y)) → ACTIVATE(X)
ACTIVATE(n__sel(y0, n__dbls(x0))) → SEL(y0, dbls(activate(x0)))
DBLS(cons(X, Y)) → ACTIVATE(Y)
ACTIVATE(n__sel(n__sel(y0, y1), n__s(x0))) → SEL(sel(activate(y0), activate(y1)), s(x0))
ACTIVATE(n__sel(y0, n__s(x0))) → SEL(y0, s(x0))
SEL(s(n__s(x0)), cons(y1, y2)) → SEL(s(x0), activate(y2))
ACTIVATE(n__from(X)) → FROM(X)
ACTIVATE(n__dbls(x0)) → DBLS(x0)
ACTIVATE(n__sel(n__indx(y0, y1), n__indx(x0, x1))) → SEL(indx(activate(y0), y1), indx(activate(x0), x1))
ACTIVATE(n__dbl(n__dbls(x0))) → DBL(dbls(activate(x0)))
ACTIVATE(n__sel(X1, X2)) → ACTIVATE(X2)
INDX(cons(X, Y), Z) → ACTIVATE(X)
ACTIVATE(n__sel(n__sel(y0, y1), n__from(x0))) → SEL(sel(activate(y0), activate(y1)), from(x0))
ACTIVATE(n__dbl(x0)) → DBL(x0)
ACTIVATE(n__sel(n__dbl(y0), n__sel(x0, x1))) → SEL(dbl(activate(y0)), sel(activate(x0), activate(x1)))
SEL(s(n__indx(x0, x1)), cons(y1, y2)) → SEL(indx(activate(x0), x1), activate(y2))
ACTIVATE(n__sel(n__sel(y0, y1), n__dbl(x0))) → SEL(sel(activate(y0), activate(y1)), dbl(activate(x0)))
ACTIVATE(n__sel(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__dbls(n__from(x0))) → DBLS(from(x0))
ACTIVATE(n__sel(n__sel(y0, y1), x0)) → SEL(sel(activate(y0), activate(y1)), x0)
FROM(X) → ACTIVATE(X)
ACTIVATE(n__dbls(n__sel(x0, x1))) → DBLS(sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__dbl(y0), n__s(x0))) → SEL(dbl(activate(y0)), s(x0))
ACTIVATE(n__sel(n__dbl(y0), n__dbls(x0))) → SEL(dbl(activate(y0)), dbls(activate(x0)))
ACTIVATE(n__sel(n__dbl(y0), x0)) → SEL(dbl(activate(y0)), x0)
ACTIVATE(n__dbl(n__indx(x0, x1))) → DBL(indx(activate(x0), x1))
SEL(s(X), cons(Y, Z)) → ACTIVATE(X)
DBLS(cons(X, Y)) → ACTIVATE(X)
DBL(s(X)) → ACTIVATE(X)
ACTIVATE(n__sel(n__indx(y0, y1), n__s(x0))) → SEL(indx(activate(y0), y1), s(x0))
ACTIVATE(n__sel(n__indx(y0, y1), n__sel(x0, x1))) → SEL(indx(activate(y0), y1), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(y0, n__from(x0))) → SEL(y0, from(x0))
ACTIVATE(n__sel(n__s(x0), y1)) → SEL(s(x0), activate(y1))
ACTIVATE(n__sel(n__sel(y0, y1), n__sel(x0, x1))) → SEL(sel(activate(y0), activate(y1)), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(y0, n__sel(x0, x1))) → SEL(y0, sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(y0, x0)) → SEL(y0, x0)
ACTIVATE(n__sel(y0, n__dbl(x0))) → SEL(y0, dbl(activate(x0)))
ACTIVATE(n__dbls(n__dbl(x0))) → DBLS(dbl(activate(x0)))
ACTIVATE(n__dbls(n__indx(x0, x1))) → DBLS(indx(activate(x0), x1))
ACTIVATE(n__dbls(n__dbls(x0))) → DBLS(dbls(activate(x0)))
ACTIVATE(n__sel(n__sel(y0, y1), n__indx(x0, x1))) → SEL(sel(activate(y0), activate(y1)), indx(activate(x0), x1))
ACTIVATE(n__sel(n__indx(y0, y1), x0)) → SEL(indx(activate(y0), y1), x0)
ACTIVATE(n__indx(n__s(x0), y1)) → INDX(s(x0), y1)
ACTIVATE(n__dbl(n__s(x0))) → DBL(s(x0))
ACTIVATE(n__sel(y0, n__indx(x0, x1))) → SEL(y0, indx(activate(x0), x1))
ACTIVATE(n__sel(n__indx(y0, y1), n__from(x0))) → SEL(indx(activate(y0), y1), from(x0))
SEL(s(n__from(x0)), cons(y1, y2)) → SEL(from(x0), activate(y2))
ACTIVATE(n__indx(x0, y1)) → INDX(x0, y1)
ACTIVATE(n__dbl(n__sel(x0, x1))) → DBL(sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__dbls(x0), y1)) → SEL(dbls(activate(x0)), activate(y1))
ACTIVATE(n__sel(n__dbl(y0), n__dbl(x0))) → SEL(dbl(activate(y0)), dbl(activate(x0)))
SEL(s(n__dbls(x0)), cons(y1, y2)) → SEL(dbls(activate(x0)), activate(y2))
SEL(s(n__dbl(x0)), cons(y1, y2)) → SEL(dbl(activate(x0)), activate(y2))
ACTIVATE(n__sel(n__sel(y0, y1), n__dbls(x0))) → SEL(sel(activate(y0), activate(y1)), dbls(activate(x0)))
ACTIVATE(n__sel(n__indx(y0, y1), n__dbls(x0))) → SEL(indx(activate(y0), y1), dbls(activate(x0)))
ACTIVATE(n__sel(n__dbl(y0), n__from(x0))) → SEL(dbl(activate(y0)), from(x0))
SEL(s(n__sel(x0, x1)), cons(y1, y2)) → SEL(sel(activate(x0), activate(x1)), activate(y2))
ACTIVATE(n__indx(n__dbls(x0), y1)) → INDX(dbls(activate(x0)), y1)
ACTIVATE(n__indx(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__indx(n__from(x0), y1)) → INDX(from(x0), y1)
ACTIVATE(n__indx(n__dbl(x0), y1)) → INDX(dbl(activate(x0)), y1)
INDX(cons(X, Y), Z) → ACTIVATE(Y)
ACTIVATE(n__sel(n__dbl(y0), n__indx(x0, x1))) → SEL(dbl(activate(y0)), indx(activate(x0), x1))
SEL(s(x0), cons(y1, y2)) → SEL(x0, activate(y2))
ACTIVATE(n__indx(n__indx(x0, x1), y1)) → INDX(indx(activate(x0), x1), y1)
ACTIVATE(n__indx(n__sel(x0, x1), y1)) → INDX(sel(activate(x0), activate(x1)), y1)
The TRS R consists of the following rules:
dbl(0) → 0
dbl(s(X)) → s(n__s(n__dbl(activate(X))))
dbls(nil) → nil
dbls(cons(X, Y)) → cons(n__dbl(activate(X)), n__dbls(activate(Y)))
sel(0, cons(X, Y)) → activate(X)
sel(s(X), cons(Y, Z)) → sel(activate(X), activate(Z))
indx(nil, X) → nil
indx(cons(X, Y), Z) → cons(n__sel(activate(X), activate(Z)), n__indx(activate(Y), activate(Z)))
from(X) → cons(activate(X), n__from(n__s(activate(X))))
s(X) → n__s(X)
dbl(X) → n__dbl(X)
dbls(X) → n__dbls(X)
sel(X1, X2) → n__sel(X1, X2)
indx(X1, X2) → n__indx(X1, X2)
from(X) → n__from(X)
activate(n__s(X)) → s(X)
activate(n__dbl(X)) → dbl(activate(X))
activate(n__dbls(X)) → dbls(activate(X))
activate(n__sel(X1, X2)) → sel(activate(X1), activate(X2))
activate(n__indx(X1, X2)) → indx(activate(X1), X2)
activate(n__from(X)) → from(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule ACTIVATE(n__sel(n__s(x0), y1)) → SEL(s(x0), activate(y1)) at position [1] we obtained the following new rules:
ACTIVATE(n__sel(n__s(y0), n__sel(x0, x1))) → SEL(s(y0), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__s(y0), x0)) → SEL(s(y0), x0)
ACTIVATE(n__sel(n__s(y0), n__dbl(x0))) → SEL(s(y0), dbl(activate(x0)))
ACTIVATE(n__sel(n__s(y0), n__indx(x0, x1))) → SEL(s(y0), indx(activate(x0), x1))
ACTIVATE(n__sel(n__s(y0), n__from(x0))) → SEL(s(y0), from(x0))
ACTIVATE(n__sel(n__s(y0), n__dbls(x0))) → SEL(s(y0), dbls(activate(x0)))
ACTIVATE(n__sel(n__s(y0), n__s(x0))) → SEL(s(y0), s(x0))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
Q DP problem:
The TRS P consists of the following rules:
INDX(cons(X, Y), Z) → ACTIVATE(Z)
ACTIVATE(n__sel(n__s(y0), n__indx(x0, x1))) → SEL(s(y0), indx(activate(x0), x1))
ACTIVATE(n__sel(n__s(y0), n__dbl(x0))) → SEL(s(y0), dbl(activate(x0)))
ACTIVATE(n__dbl(n__dbl(x0))) → DBL(dbl(activate(x0)))
SEL(s(X), cons(Y, Z)) → ACTIVATE(Z)
ACTIVATE(n__sel(n__indx(y0, y1), n__dbl(x0))) → SEL(indx(activate(y0), y1), dbl(activate(x0)))
ACTIVATE(n__dbl(X)) → ACTIVATE(X)
ACTIVATE(n__dbls(X)) → ACTIVATE(X)
SEL(0, cons(X, Y)) → ACTIVATE(X)
ACTIVATE(n__sel(y0, n__dbls(x0))) → SEL(y0, dbls(activate(x0)))
DBLS(cons(X, Y)) → ACTIVATE(Y)
ACTIVATE(n__sel(n__sel(y0, y1), n__s(x0))) → SEL(sel(activate(y0), activate(y1)), s(x0))
ACTIVATE(n__sel(y0, n__s(x0))) → SEL(y0, s(x0))
SEL(s(n__s(x0)), cons(y1, y2)) → SEL(s(x0), activate(y2))
ACTIVATE(n__sel(n__s(y0), x0)) → SEL(s(y0), x0)
ACTIVATE(n__from(X)) → FROM(X)
ACTIVATE(n__sel(n__s(y0), n__s(x0))) → SEL(s(y0), s(x0))
ACTIVATE(n__dbls(x0)) → DBLS(x0)
ACTIVATE(n__sel(n__indx(y0, y1), n__indx(x0, x1))) → SEL(indx(activate(y0), y1), indx(activate(x0), x1))
ACTIVATE(n__sel(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__dbl(n__dbls(x0))) → DBL(dbls(activate(x0)))
ACTIVATE(n__sel(n__sel(y0, y1), n__from(x0))) → SEL(sel(activate(y0), activate(y1)), from(x0))
INDX(cons(X, Y), Z) → ACTIVATE(X)
ACTIVATE(n__dbl(x0)) → DBL(x0)
ACTIVATE(n__sel(n__sel(y0, y1), n__dbl(x0))) → SEL(sel(activate(y0), activate(y1)), dbl(activate(x0)))
SEL(s(n__indx(x0, x1)), cons(y1, y2)) → SEL(indx(activate(x0), x1), activate(y2))
ACTIVATE(n__sel(n__dbl(y0), n__sel(x0, x1))) → SEL(dbl(activate(y0)), sel(activate(x0), activate(x1)))
ACTIVATE(n__dbls(n__from(x0))) → DBLS(from(x0))
ACTIVATE(n__sel(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__sel(n__sel(y0, y1), x0)) → SEL(sel(activate(y0), activate(y1)), x0)
ACTIVATE(n__sel(n__s(y0), n__from(x0))) → SEL(s(y0), from(x0))
FROM(X) → ACTIVATE(X)
ACTIVATE(n__sel(n__dbl(y0), n__s(x0))) → SEL(dbl(activate(y0)), s(x0))
ACTIVATE(n__dbls(n__sel(x0, x1))) → DBLS(sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__dbl(y0), n__dbls(x0))) → SEL(dbl(activate(y0)), dbls(activate(x0)))
ACTIVATE(n__sel(n__dbl(y0), x0)) → SEL(dbl(activate(y0)), x0)
ACTIVATE(n__dbl(n__indx(x0, x1))) → DBL(indx(activate(x0), x1))
DBLS(cons(X, Y)) → ACTIVATE(X)
SEL(s(X), cons(Y, Z)) → ACTIVATE(X)
ACTIVATE(n__sel(n__indx(y0, y1), n__s(x0))) → SEL(indx(activate(y0), y1), s(x0))
DBL(s(X)) → ACTIVATE(X)
ACTIVATE(n__sel(n__indx(y0, y1), n__sel(x0, x1))) → SEL(indx(activate(y0), y1), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__sel(y0, y1), n__sel(x0, x1))) → SEL(sel(activate(y0), activate(y1)), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(y0, n__from(x0))) → SEL(y0, from(x0))
ACTIVATE(n__sel(y0, n__sel(x0, x1))) → SEL(y0, sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(y0, n__dbl(x0))) → SEL(y0, dbl(activate(x0)))
ACTIVATE(n__sel(y0, x0)) → SEL(y0, x0)
ACTIVATE(n__dbls(n__dbl(x0))) → DBLS(dbl(activate(x0)))
ACTIVATE(n__dbls(n__indx(x0, x1))) → DBLS(indx(activate(x0), x1))
ACTIVATE(n__dbls(n__dbls(x0))) → DBLS(dbls(activate(x0)))
ACTIVATE(n__sel(n__sel(y0, y1), n__indx(x0, x1))) → SEL(sel(activate(y0), activate(y1)), indx(activate(x0), x1))
ACTIVATE(n__sel(n__indx(y0, y1), x0)) → SEL(indx(activate(y0), y1), x0)
ACTIVATE(n__indx(n__s(x0), y1)) → INDX(s(x0), y1)
ACTIVATE(n__dbl(n__s(x0))) → DBL(s(x0))
ACTIVATE(n__sel(y0, n__indx(x0, x1))) → SEL(y0, indx(activate(x0), x1))
ACTIVATE(n__sel(n__s(y0), n__sel(x0, x1))) → SEL(s(y0), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__indx(y0, y1), n__from(x0))) → SEL(indx(activate(y0), y1), from(x0))
SEL(s(n__from(x0)), cons(y1, y2)) → SEL(from(x0), activate(y2))
ACTIVATE(n__dbl(n__sel(x0, x1))) → DBL(sel(activate(x0), activate(x1)))
ACTIVATE(n__indx(x0, y1)) → INDX(x0, y1)
ACTIVATE(n__sel(n__dbl(y0), n__dbl(x0))) → SEL(dbl(activate(y0)), dbl(activate(x0)))
ACTIVATE(n__sel(n__dbls(x0), y1)) → SEL(dbls(activate(x0)), activate(y1))
SEL(s(n__dbls(x0)), cons(y1, y2)) → SEL(dbls(activate(x0)), activate(y2))
ACTIVATE(n__sel(n__sel(y0, y1), n__dbls(x0))) → SEL(sel(activate(y0), activate(y1)), dbls(activate(x0)))
SEL(s(n__dbl(x0)), cons(y1, y2)) → SEL(dbl(activate(x0)), activate(y2))
ACTIVATE(n__sel(n__indx(y0, y1), n__dbls(x0))) → SEL(indx(activate(y0), y1), dbls(activate(x0)))
ACTIVATE(n__sel(n__dbl(y0), n__from(x0))) → SEL(dbl(activate(y0)), from(x0))
SEL(s(n__sel(x0, x1)), cons(y1, y2)) → SEL(sel(activate(x0), activate(x1)), activate(y2))
ACTIVATE(n__indx(n__dbls(x0), y1)) → INDX(dbls(activate(x0)), y1)
ACTIVATE(n__indx(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__indx(n__from(x0), y1)) → INDX(from(x0), y1)
ACTIVATE(n__indx(n__dbl(x0), y1)) → INDX(dbl(activate(x0)), y1)
INDX(cons(X, Y), Z) → ACTIVATE(Y)
SEL(s(x0), cons(y1, y2)) → SEL(x0, activate(y2))
ACTIVATE(n__sel(n__dbl(y0), n__indx(x0, x1))) → SEL(dbl(activate(y0)), indx(activate(x0), x1))
ACTIVATE(n__indx(n__indx(x0, x1), y1)) → INDX(indx(activate(x0), x1), y1)
ACTIVATE(n__sel(n__s(y0), n__dbls(x0))) → SEL(s(y0), dbls(activate(x0)))
ACTIVATE(n__indx(n__sel(x0, x1), y1)) → INDX(sel(activate(x0), activate(x1)), y1)
The TRS R consists of the following rules:
dbl(0) → 0
dbl(s(X)) → s(n__s(n__dbl(activate(X))))
dbls(nil) → nil
dbls(cons(X, Y)) → cons(n__dbl(activate(X)), n__dbls(activate(Y)))
sel(0, cons(X, Y)) → activate(X)
sel(s(X), cons(Y, Z)) → sel(activate(X), activate(Z))
indx(nil, X) → nil
indx(cons(X, Y), Z) → cons(n__sel(activate(X), activate(Z)), n__indx(activate(Y), activate(Z)))
from(X) → cons(activate(X), n__from(n__s(activate(X))))
s(X) → n__s(X)
dbl(X) → n__dbl(X)
dbls(X) → n__dbls(X)
sel(X1, X2) → n__sel(X1, X2)
indx(X1, X2) → n__indx(X1, X2)
from(X) → n__from(X)
activate(n__s(X)) → s(X)
activate(n__dbl(X)) → dbl(activate(X))
activate(n__dbls(X)) → dbls(activate(X))
activate(n__sel(X1, X2)) → sel(activate(X1), activate(X2))
activate(n__indx(X1, X2)) → indx(activate(X1), X2)
activate(n__from(X)) → from(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule ACTIVATE(n__sel(n__dbls(x0), y1)) → SEL(dbls(activate(x0)), activate(y1)) at position [1] we obtained the following new rules:
ACTIVATE(n__sel(n__dbls(y0), n__sel(x0, x1))) → SEL(dbls(activate(y0)), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__dbls(y0), x0)) → SEL(dbls(activate(y0)), x0)
ACTIVATE(n__sel(n__dbls(y0), n__indx(x0, x1))) → SEL(dbls(activate(y0)), indx(activate(x0), x1))
ACTIVATE(n__sel(n__dbls(y0), n__from(x0))) → SEL(dbls(activate(y0)), from(x0))
ACTIVATE(n__sel(n__dbls(y0), n__s(x0))) → SEL(dbls(activate(y0)), s(x0))
ACTIVATE(n__sel(n__dbls(y0), n__dbls(x0))) → SEL(dbls(activate(y0)), dbls(activate(x0)))
ACTIVATE(n__sel(n__dbls(y0), n__dbl(x0))) → SEL(dbls(activate(y0)), dbl(activate(x0)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
Q DP problem:
The TRS P consists of the following rules:
INDX(cons(X, Y), Z) → ACTIVATE(Z)
SEL(s(X), cons(Y, Z)) → ACTIVATE(Z)
ACTIVATE(n__dbl(n__dbl(x0))) → DBL(dbl(activate(x0)))
ACTIVATE(n__sel(n__s(y0), n__dbl(x0))) → SEL(s(y0), dbl(activate(x0)))
ACTIVATE(n__sel(n__s(y0), n__indx(x0, x1))) → SEL(s(y0), indx(activate(x0), x1))
ACTIVATE(n__sel(n__indx(y0, y1), n__dbl(x0))) → SEL(indx(activate(y0), y1), dbl(activate(x0)))
ACTIVATE(n__dbls(X)) → ACTIVATE(X)
ACTIVATE(n__dbl(X)) → ACTIVATE(X)
SEL(0, cons(X, Y)) → ACTIVATE(X)
ACTIVATE(n__sel(n__dbls(y0), n__dbls(x0))) → SEL(dbls(activate(y0)), dbls(activate(x0)))
ACTIVATE(n__sel(y0, n__dbls(x0))) → SEL(y0, dbls(activate(x0)))
DBLS(cons(X, Y)) → ACTIVATE(Y)
ACTIVATE(n__sel(n__sel(y0, y1), n__s(x0))) → SEL(sel(activate(y0), activate(y1)), s(x0))
ACTIVATE(n__sel(y0, n__s(x0))) → SEL(y0, s(x0))
SEL(s(n__s(x0)), cons(y1, y2)) → SEL(s(x0), activate(y2))
ACTIVATE(n__sel(n__s(y0), x0)) → SEL(s(y0), x0)
ACTIVATE(n__from(X)) → FROM(X)
ACTIVATE(n__dbls(x0)) → DBLS(x0)
ACTIVATE(n__sel(n__s(y0), n__s(x0))) → SEL(s(y0), s(x0))
ACTIVATE(n__sel(n__indx(y0, y1), n__indx(x0, x1))) → SEL(indx(activate(y0), y1), indx(activate(x0), x1))
ACTIVATE(n__dbl(n__dbls(x0))) → DBL(dbls(activate(x0)))
ACTIVATE(n__sel(X1, X2)) → ACTIVATE(X2)
INDX(cons(X, Y), Z) → ACTIVATE(X)
ACTIVATE(n__sel(n__sel(y0, y1), n__from(x0))) → SEL(sel(activate(y0), activate(y1)), from(x0))
ACTIVATE(n__dbl(x0)) → DBL(x0)
ACTIVATE(n__sel(n__dbl(y0), n__sel(x0, x1))) → SEL(dbl(activate(y0)), sel(activate(x0), activate(x1)))
SEL(s(n__indx(x0, x1)), cons(y1, y2)) → SEL(indx(activate(x0), x1), activate(y2))
ACTIVATE(n__sel(n__sel(y0, y1), n__dbl(x0))) → SEL(sel(activate(y0), activate(y1)), dbl(activate(x0)))
ACTIVATE(n__sel(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__dbls(n__from(x0))) → DBLS(from(x0))
ACTIVATE(n__sel(n__sel(y0, y1), x0)) → SEL(sel(activate(y0), activate(y1)), x0)
FROM(X) → ACTIVATE(X)
ACTIVATE(n__sel(n__s(y0), n__from(x0))) → SEL(s(y0), from(x0))
ACTIVATE(n__dbls(n__sel(x0, x1))) → DBLS(sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__dbl(y0), n__s(x0))) → SEL(dbl(activate(y0)), s(x0))
ACTIVATE(n__sel(n__dbls(y0), n__dbl(x0))) → SEL(dbls(activate(y0)), dbl(activate(x0)))
ACTIVATE(n__sel(n__dbl(y0), n__dbls(x0))) → SEL(dbl(activate(y0)), dbls(activate(x0)))
ACTIVATE(n__sel(n__dbl(y0), x0)) → SEL(dbl(activate(y0)), x0)
ACTIVATE(n__dbl(n__indx(x0, x1))) → DBL(indx(activate(x0), x1))
SEL(s(X), cons(Y, Z)) → ACTIVATE(X)
DBLS(cons(X, Y)) → ACTIVATE(X)
ACTIVATE(n__sel(n__dbls(y0), n__indx(x0, x1))) → SEL(dbls(activate(y0)), indx(activate(x0), x1))
DBL(s(X)) → ACTIVATE(X)
ACTIVATE(n__sel(n__indx(y0, y1), n__s(x0))) → SEL(indx(activate(y0), y1), s(x0))
ACTIVATE(n__sel(n__indx(y0, y1), n__sel(x0, x1))) → SEL(indx(activate(y0), y1), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(y0, n__from(x0))) → SEL(y0, from(x0))
ACTIVATE(n__sel(n__sel(y0, y1), n__sel(x0, x1))) → SEL(sel(activate(y0), activate(y1)), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(y0, n__sel(x0, x1))) → SEL(y0, sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__dbls(y0), n__s(x0))) → SEL(dbls(activate(y0)), s(x0))
ACTIVATE(n__sel(y0, x0)) → SEL(y0, x0)
ACTIVATE(n__sel(y0, n__dbl(x0))) → SEL(y0, dbl(activate(x0)))
ACTIVATE(n__dbls(n__dbl(x0))) → DBLS(dbl(activate(x0)))
ACTIVATE(n__dbls(n__indx(x0, x1))) → DBLS(indx(activate(x0), x1))
ACTIVATE(n__dbls(n__dbls(x0))) → DBLS(dbls(activate(x0)))
ACTIVATE(n__sel(n__sel(y0, y1), n__indx(x0, x1))) → SEL(sel(activate(y0), activate(y1)), indx(activate(x0), x1))
ACTIVATE(n__sel(n__indx(y0, y1), x0)) → SEL(indx(activate(y0), y1), x0)
ACTIVATE(n__indx(n__s(x0), y1)) → INDX(s(x0), y1)
ACTIVATE(n__dbl(n__s(x0))) → DBL(s(x0))
ACTIVATE(n__sel(n__dbls(y0), x0)) → SEL(dbls(activate(y0)), x0)
ACTIVATE(n__sel(y0, n__indx(x0, x1))) → SEL(y0, indx(activate(x0), x1))
ACTIVATE(n__sel(n__indx(y0, y1), n__from(x0))) → SEL(indx(activate(y0), y1), from(x0))
ACTIVATE(n__sel(n__s(y0), n__sel(x0, x1))) → SEL(s(y0), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__dbls(y0), n__from(x0))) → SEL(dbls(activate(y0)), from(x0))
SEL(s(n__from(x0)), cons(y1, y2)) → SEL(from(x0), activate(y2))
ACTIVATE(n__indx(x0, y1)) → INDX(x0, y1)
ACTIVATE(n__dbl(n__sel(x0, x1))) → DBL(sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__dbl(y0), n__dbl(x0))) → SEL(dbl(activate(y0)), dbl(activate(x0)))
SEL(s(n__dbls(x0)), cons(y1, y2)) → SEL(dbls(activate(x0)), activate(y2))
ACTIVATE(n__sel(n__dbls(y0), n__sel(x0, x1))) → SEL(dbls(activate(y0)), sel(activate(x0), activate(x1)))
SEL(s(n__dbl(x0)), cons(y1, y2)) → SEL(dbl(activate(x0)), activate(y2))
ACTIVATE(n__sel(n__sel(y0, y1), n__dbls(x0))) → SEL(sel(activate(y0), activate(y1)), dbls(activate(x0)))
ACTIVATE(n__sel(n__indx(y0, y1), n__dbls(x0))) → SEL(indx(activate(y0), y1), dbls(activate(x0)))
ACTIVATE(n__sel(n__dbl(y0), n__from(x0))) → SEL(dbl(activate(y0)), from(x0))
SEL(s(n__sel(x0, x1)), cons(y1, y2)) → SEL(sel(activate(x0), activate(x1)), activate(y2))
ACTIVATE(n__indx(n__dbls(x0), y1)) → INDX(dbls(activate(x0)), y1)
ACTIVATE(n__indx(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__indx(n__from(x0), y1)) → INDX(from(x0), y1)
ACTIVATE(n__indx(n__dbl(x0), y1)) → INDX(dbl(activate(x0)), y1)
INDX(cons(X, Y), Z) → ACTIVATE(Y)
ACTIVATE(n__sel(n__dbl(y0), n__indx(x0, x1))) → SEL(dbl(activate(y0)), indx(activate(x0), x1))
SEL(s(x0), cons(y1, y2)) → SEL(x0, activate(y2))
ACTIVATE(n__indx(n__indx(x0, x1), y1)) → INDX(indx(activate(x0), x1), y1)
ACTIVATE(n__sel(n__s(y0), n__dbls(x0))) → SEL(s(y0), dbls(activate(x0)))
ACTIVATE(n__indx(n__sel(x0, x1), y1)) → INDX(sel(activate(x0), activate(x1)), y1)
The TRS R consists of the following rules:
dbl(0) → 0
dbl(s(X)) → s(n__s(n__dbl(activate(X))))
dbls(nil) → nil
dbls(cons(X, Y)) → cons(n__dbl(activate(X)), n__dbls(activate(Y)))
sel(0, cons(X, Y)) → activate(X)
sel(s(X), cons(Y, Z)) → sel(activate(X), activate(Z))
indx(nil, X) → nil
indx(cons(X, Y), Z) → cons(n__sel(activate(X), activate(Z)), n__indx(activate(Y), activate(Z)))
from(X) → cons(activate(X), n__from(n__s(activate(X))))
s(X) → n__s(X)
dbl(X) → n__dbl(X)
dbls(X) → n__dbls(X)
sel(X1, X2) → n__sel(X1, X2)
indx(X1, X2) → n__indx(X1, X2)
from(X) → n__from(X)
activate(n__s(X)) → s(X)
activate(n__dbl(X)) → dbl(activate(X))
activate(n__dbls(X)) → dbls(activate(X))
activate(n__sel(X1, X2)) → sel(activate(X1), activate(X2))
activate(n__indx(X1, X2)) → indx(activate(X1), X2)
activate(n__from(X)) → from(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule ACTIVATE(n__indx(n__s(x0), y1)) → INDX(s(x0), y1) at position [0] we obtained the following new rules:
ACTIVATE(n__indx(n__s(x0), y1)) → INDX(n__s(x0), y1)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
INDX(cons(X, Y), Z) → ACTIVATE(Z)
ACTIVATE(n__sel(n__s(y0), n__indx(x0, x1))) → SEL(s(y0), indx(activate(x0), x1))
ACTIVATE(n__sel(n__s(y0), n__dbl(x0))) → SEL(s(y0), dbl(activate(x0)))
ACTIVATE(n__dbl(n__dbl(x0))) → DBL(dbl(activate(x0)))
SEL(s(X), cons(Y, Z)) → ACTIVATE(Z)
ACTIVATE(n__sel(n__indx(y0, y1), n__dbl(x0))) → SEL(indx(activate(y0), y1), dbl(activate(x0)))
ACTIVATE(n__dbl(X)) → ACTIVATE(X)
ACTIVATE(n__dbls(X)) → ACTIVATE(X)
SEL(0, cons(X, Y)) → ACTIVATE(X)
ACTIVATE(n__sel(n__dbls(y0), n__dbls(x0))) → SEL(dbls(activate(y0)), dbls(activate(x0)))
ACTIVATE(n__sel(y0, n__dbls(x0))) → SEL(y0, dbls(activate(x0)))
DBLS(cons(X, Y)) → ACTIVATE(Y)
ACTIVATE(n__sel(n__sel(y0, y1), n__s(x0))) → SEL(sel(activate(y0), activate(y1)), s(x0))
ACTIVATE(n__sel(y0, n__s(x0))) → SEL(y0, s(x0))
SEL(s(n__s(x0)), cons(y1, y2)) → SEL(s(x0), activate(y2))
ACTIVATE(n__sel(n__s(y0), x0)) → SEL(s(y0), x0)
ACTIVATE(n__from(X)) → FROM(X)
ACTIVATE(n__sel(n__s(y0), n__s(x0))) → SEL(s(y0), s(x0))
ACTIVATE(n__dbls(x0)) → DBLS(x0)
ACTIVATE(n__sel(n__indx(y0, y1), n__indx(x0, x1))) → SEL(indx(activate(y0), y1), indx(activate(x0), x1))
ACTIVATE(n__sel(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__dbl(n__dbls(x0))) → DBL(dbls(activate(x0)))
ACTIVATE(n__sel(n__sel(y0, y1), n__from(x0))) → SEL(sel(activate(y0), activate(y1)), from(x0))
INDX(cons(X, Y), Z) → ACTIVATE(X)
ACTIVATE(n__dbl(x0)) → DBL(x0)
ACTIVATE(n__sel(n__sel(y0, y1), n__dbl(x0))) → SEL(sel(activate(y0), activate(y1)), dbl(activate(x0)))
SEL(s(n__indx(x0, x1)), cons(y1, y2)) → SEL(indx(activate(x0), x1), activate(y2))
ACTIVATE(n__sel(n__dbl(y0), n__sel(x0, x1))) → SEL(dbl(activate(y0)), sel(activate(x0), activate(x1)))
ACTIVATE(n__dbls(n__from(x0))) → DBLS(from(x0))
ACTIVATE(n__sel(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__sel(n__sel(y0, y1), x0)) → SEL(sel(activate(y0), activate(y1)), x0)
ACTIVATE(n__sel(n__s(y0), n__from(x0))) → SEL(s(y0), from(x0))
FROM(X) → ACTIVATE(X)
ACTIVATE(n__sel(n__dbl(y0), n__s(x0))) → SEL(dbl(activate(y0)), s(x0))
ACTIVATE(n__dbls(n__sel(x0, x1))) → DBLS(sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__dbl(y0), n__dbls(x0))) → SEL(dbl(activate(y0)), dbls(activate(x0)))
ACTIVATE(n__sel(n__dbls(y0), n__dbl(x0))) → SEL(dbls(activate(y0)), dbl(activate(x0)))
ACTIVATE(n__sel(n__dbl(y0), x0)) → SEL(dbl(activate(y0)), x0)
ACTIVATE(n__dbl(n__indx(x0, x1))) → DBL(indx(activate(x0), x1))
DBLS(cons(X, Y)) → ACTIVATE(X)
SEL(s(X), cons(Y, Z)) → ACTIVATE(X)
ACTIVATE(n__sel(n__dbls(y0), n__indx(x0, x1))) → SEL(dbls(activate(y0)), indx(activate(x0), x1))
ACTIVATE(n__sel(n__indx(y0, y1), n__s(x0))) → SEL(indx(activate(y0), y1), s(x0))
DBL(s(X)) → ACTIVATE(X)
ACTIVATE(n__sel(n__indx(y0, y1), n__sel(x0, x1))) → SEL(indx(activate(y0), y1), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__sel(y0, y1), n__sel(x0, x1))) → SEL(sel(activate(y0), activate(y1)), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(y0, n__from(x0))) → SEL(y0, from(x0))
ACTIVATE(n__sel(y0, n__sel(x0, x1))) → SEL(y0, sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__dbls(y0), n__s(x0))) → SEL(dbls(activate(y0)), s(x0))
ACTIVATE(n__sel(y0, n__dbl(x0))) → SEL(y0, dbl(activate(x0)))
ACTIVATE(n__sel(y0, x0)) → SEL(y0, x0)
ACTIVATE(n__dbls(n__dbl(x0))) → DBLS(dbl(activate(x0)))
ACTIVATE(n__dbls(n__indx(x0, x1))) → DBLS(indx(activate(x0), x1))
ACTIVATE(n__dbls(n__dbls(x0))) → DBLS(dbls(activate(x0)))
ACTIVATE(n__sel(n__sel(y0, y1), n__indx(x0, x1))) → SEL(sel(activate(y0), activate(y1)), indx(activate(x0), x1))
ACTIVATE(n__sel(n__indx(y0, y1), x0)) → SEL(indx(activate(y0), y1), x0)
ACTIVATE(n__dbl(n__s(x0))) → DBL(s(x0))
ACTIVATE(n__sel(n__dbls(y0), x0)) → SEL(dbls(activate(y0)), x0)
ACTIVATE(n__sel(y0, n__indx(x0, x1))) → SEL(y0, indx(activate(x0), x1))
ACTIVATE(n__sel(n__s(y0), n__sel(x0, x1))) → SEL(s(y0), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__indx(y0, y1), n__from(x0))) → SEL(indx(activate(y0), y1), from(x0))
ACTIVATE(n__sel(n__dbls(y0), n__from(x0))) → SEL(dbls(activate(y0)), from(x0))
SEL(s(n__from(x0)), cons(y1, y2)) → SEL(from(x0), activate(y2))
ACTIVATE(n__dbl(n__sel(x0, x1))) → DBL(sel(activate(x0), activate(x1)))
ACTIVATE(n__indx(x0, y1)) → INDX(x0, y1)
ACTIVATE(n__sel(n__dbl(y0), n__dbl(x0))) → SEL(dbl(activate(y0)), dbl(activate(x0)))
SEL(s(n__dbls(x0)), cons(y1, y2)) → SEL(dbls(activate(x0)), activate(y2))
ACTIVATE(n__sel(n__sel(y0, y1), n__dbls(x0))) → SEL(sel(activate(y0), activate(y1)), dbls(activate(x0)))
SEL(s(n__dbl(x0)), cons(y1, y2)) → SEL(dbl(activate(x0)), activate(y2))
ACTIVATE(n__sel(n__dbls(y0), n__sel(x0, x1))) → SEL(dbls(activate(y0)), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__indx(y0, y1), n__dbls(x0))) → SEL(indx(activate(y0), y1), dbls(activate(x0)))
ACTIVATE(n__sel(n__dbl(y0), n__from(x0))) → SEL(dbl(activate(y0)), from(x0))
SEL(s(n__sel(x0, x1)), cons(y1, y2)) → SEL(sel(activate(x0), activate(x1)), activate(y2))
ACTIVATE(n__indx(n__dbls(x0), y1)) → INDX(dbls(activate(x0)), y1)
ACTIVATE(n__indx(n__s(x0), y1)) → INDX(n__s(x0), y1)
ACTIVATE(n__indx(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__indx(n__from(x0), y1)) → INDX(from(x0), y1)
ACTIVATE(n__indx(n__dbl(x0), y1)) → INDX(dbl(activate(x0)), y1)
INDX(cons(X, Y), Z) → ACTIVATE(Y)
SEL(s(x0), cons(y1, y2)) → SEL(x0, activate(y2))
ACTIVATE(n__sel(n__dbl(y0), n__indx(x0, x1))) → SEL(dbl(activate(y0)), indx(activate(x0), x1))
ACTIVATE(n__indx(n__indx(x0, x1), y1)) → INDX(indx(activate(x0), x1), y1)
ACTIVATE(n__sel(n__s(y0), n__dbls(x0))) → SEL(s(y0), dbls(activate(x0)))
ACTIVATE(n__indx(n__sel(x0, x1), y1)) → INDX(sel(activate(x0), activate(x1)), y1)
The TRS R consists of the following rules:
dbl(0) → 0
dbl(s(X)) → s(n__s(n__dbl(activate(X))))
dbls(nil) → nil
dbls(cons(X, Y)) → cons(n__dbl(activate(X)), n__dbls(activate(Y)))
sel(0, cons(X, Y)) → activate(X)
sel(s(X), cons(Y, Z)) → sel(activate(X), activate(Z))
indx(nil, X) → nil
indx(cons(X, Y), Z) → cons(n__sel(activate(X), activate(Z)), n__indx(activate(Y), activate(Z)))
from(X) → cons(activate(X), n__from(n__s(activate(X))))
s(X) → n__s(X)
dbl(X) → n__dbl(X)
dbls(X) → n__dbls(X)
sel(X1, X2) → n__sel(X1, X2)
indx(X1, X2) → n__indx(X1, X2)
from(X) → n__from(X)
activate(n__s(X)) → s(X)
activate(n__dbl(X)) → dbl(activate(X))
activate(n__dbls(X)) → dbls(activate(X))
activate(n__sel(X1, X2)) → sel(activate(X1), activate(X2))
activate(n__indx(X1, X2)) → indx(activate(X1), X2)
activate(n__from(X)) → from(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
Q DP problem:
The TRS P consists of the following rules:
INDX(cons(X, Y), Z) → ACTIVATE(Z)
ACTIVATE(n__sel(n__s(y0), n__indx(x0, x1))) → SEL(s(y0), indx(activate(x0), x1))
ACTIVATE(n__sel(n__s(y0), n__dbl(x0))) → SEL(s(y0), dbl(activate(x0)))
ACTIVATE(n__dbl(n__dbl(x0))) → DBL(dbl(activate(x0)))
SEL(s(X), cons(Y, Z)) → ACTIVATE(Z)
ACTIVATE(n__sel(n__indx(y0, y1), n__dbl(x0))) → SEL(indx(activate(y0), y1), dbl(activate(x0)))
ACTIVATE(n__dbls(X)) → ACTIVATE(X)
ACTIVATE(n__dbl(X)) → ACTIVATE(X)
SEL(0, cons(X, Y)) → ACTIVATE(X)
ACTIVATE(n__sel(n__dbls(y0), n__dbls(x0))) → SEL(dbls(activate(y0)), dbls(activate(x0)))
ACTIVATE(n__sel(y0, n__dbls(x0))) → SEL(y0, dbls(activate(x0)))
DBLS(cons(X, Y)) → ACTIVATE(Y)
ACTIVATE(n__sel(n__sel(y0, y1), n__s(x0))) → SEL(sel(activate(y0), activate(y1)), s(x0))
ACTIVATE(n__sel(y0, n__s(x0))) → SEL(y0, s(x0))
SEL(s(n__s(x0)), cons(y1, y2)) → SEL(s(x0), activate(y2))
ACTIVATE(n__sel(n__s(y0), x0)) → SEL(s(y0), x0)
ACTIVATE(n__from(X)) → FROM(X)
ACTIVATE(n__sel(n__s(y0), n__s(x0))) → SEL(s(y0), s(x0))
ACTIVATE(n__dbls(x0)) → DBLS(x0)
ACTIVATE(n__sel(n__indx(y0, y1), n__indx(x0, x1))) → SEL(indx(activate(y0), y1), indx(activate(x0), x1))
ACTIVATE(n__sel(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__dbl(n__dbls(x0))) → DBL(dbls(activate(x0)))
ACTIVATE(n__sel(n__sel(y0, y1), n__from(x0))) → SEL(sel(activate(y0), activate(y1)), from(x0))
INDX(cons(X, Y), Z) → ACTIVATE(X)
ACTIVATE(n__dbl(x0)) → DBL(x0)
ACTIVATE(n__sel(n__sel(y0, y1), n__dbl(x0))) → SEL(sel(activate(y0), activate(y1)), dbl(activate(x0)))
ACTIVATE(n__sel(n__dbl(y0), n__sel(x0, x1))) → SEL(dbl(activate(y0)), sel(activate(x0), activate(x1)))
SEL(s(n__indx(x0, x1)), cons(y1, y2)) → SEL(indx(activate(x0), x1), activate(y2))
ACTIVATE(n__dbls(n__from(x0))) → DBLS(from(x0))
ACTIVATE(n__sel(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__sel(n__sel(y0, y1), x0)) → SEL(sel(activate(y0), activate(y1)), x0)
ACTIVATE(n__sel(n__s(y0), n__from(x0))) → SEL(s(y0), from(x0))
FROM(X) → ACTIVATE(X)
ACTIVATE(n__dbls(n__sel(x0, x1))) → DBLS(sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__dbl(y0), n__s(x0))) → SEL(dbl(activate(y0)), s(x0))
ACTIVATE(n__sel(n__dbls(y0), n__dbl(x0))) → SEL(dbls(activate(y0)), dbl(activate(x0)))
ACTIVATE(n__sel(n__dbl(y0), n__dbls(x0))) → SEL(dbl(activate(y0)), dbls(activate(x0)))
ACTIVATE(n__sel(n__dbl(y0), x0)) → SEL(dbl(activate(y0)), x0)
ACTIVATE(n__dbl(n__indx(x0, x1))) → DBL(indx(activate(x0), x1))
DBLS(cons(X, Y)) → ACTIVATE(X)
SEL(s(X), cons(Y, Z)) → ACTIVATE(X)
ACTIVATE(n__sel(n__dbls(y0), n__indx(x0, x1))) → SEL(dbls(activate(y0)), indx(activate(x0), x1))
ACTIVATE(n__sel(n__indx(y0, y1), n__s(x0))) → SEL(indx(activate(y0), y1), s(x0))
DBL(s(X)) → ACTIVATE(X)
ACTIVATE(n__sel(n__indx(y0, y1), n__sel(x0, x1))) → SEL(indx(activate(y0), y1), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(y0, n__from(x0))) → SEL(y0, from(x0))
ACTIVATE(n__sel(n__sel(y0, y1), n__sel(x0, x1))) → SEL(sel(activate(y0), activate(y1)), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(y0, n__sel(x0, x1))) → SEL(y0, sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__dbls(y0), n__s(x0))) → SEL(dbls(activate(y0)), s(x0))
ACTIVATE(n__sel(y0, x0)) → SEL(y0, x0)
ACTIVATE(n__sel(y0, n__dbl(x0))) → SEL(y0, dbl(activate(x0)))
ACTIVATE(n__dbls(n__dbl(x0))) → DBLS(dbl(activate(x0)))
ACTIVATE(n__dbls(n__indx(x0, x1))) → DBLS(indx(activate(x0), x1))
ACTIVATE(n__dbls(n__dbls(x0))) → DBLS(dbls(activate(x0)))
ACTIVATE(n__sel(n__sel(y0, y1), n__indx(x0, x1))) → SEL(sel(activate(y0), activate(y1)), indx(activate(x0), x1))
ACTIVATE(n__sel(n__indx(y0, y1), x0)) → SEL(indx(activate(y0), y1), x0)
ACTIVATE(n__dbl(n__s(x0))) → DBL(s(x0))
ACTIVATE(n__sel(n__dbls(y0), x0)) → SEL(dbls(activate(y0)), x0)
ACTIVATE(n__sel(y0, n__indx(x0, x1))) → SEL(y0, indx(activate(x0), x1))
ACTIVATE(n__sel(n__s(y0), n__sel(x0, x1))) → SEL(s(y0), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__indx(y0, y1), n__from(x0))) → SEL(indx(activate(y0), y1), from(x0))
ACTIVATE(n__sel(n__dbls(y0), n__from(x0))) → SEL(dbls(activate(y0)), from(x0))
SEL(s(n__from(x0)), cons(y1, y2)) → SEL(from(x0), activate(y2))
ACTIVATE(n__dbl(n__sel(x0, x1))) → DBL(sel(activate(x0), activate(x1)))
ACTIVATE(n__indx(x0, y1)) → INDX(x0, y1)
ACTIVATE(n__sel(n__dbl(y0), n__dbl(x0))) → SEL(dbl(activate(y0)), dbl(activate(x0)))
SEL(s(n__dbls(x0)), cons(y1, y2)) → SEL(dbls(activate(x0)), activate(y2))
ACTIVATE(n__sel(n__dbls(y0), n__sel(x0, x1))) → SEL(dbls(activate(y0)), sel(activate(x0), activate(x1)))
SEL(s(n__dbl(x0)), cons(y1, y2)) → SEL(dbl(activate(x0)), activate(y2))
ACTIVATE(n__sel(n__sel(y0, y1), n__dbls(x0))) → SEL(sel(activate(y0), activate(y1)), dbls(activate(x0)))
ACTIVATE(n__sel(n__indx(y0, y1), n__dbls(x0))) → SEL(indx(activate(y0), y1), dbls(activate(x0)))
ACTIVATE(n__sel(n__dbl(y0), n__from(x0))) → SEL(dbl(activate(y0)), from(x0))
SEL(s(n__sel(x0, x1)), cons(y1, y2)) → SEL(sel(activate(x0), activate(x1)), activate(y2))
ACTIVATE(n__indx(n__dbls(x0), y1)) → INDX(dbls(activate(x0)), y1)
ACTIVATE(n__indx(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__indx(n__from(x0), y1)) → INDX(from(x0), y1)
ACTIVATE(n__indx(n__dbl(x0), y1)) → INDX(dbl(activate(x0)), y1)
INDX(cons(X, Y), Z) → ACTIVATE(Y)
ACTIVATE(n__sel(n__dbl(y0), n__indx(x0, x1))) → SEL(dbl(activate(y0)), indx(activate(x0), x1))
SEL(s(x0), cons(y1, y2)) → SEL(x0, activate(y2))
ACTIVATE(n__indx(n__indx(x0, x1), y1)) → INDX(indx(activate(x0), x1), y1)
ACTIVATE(n__sel(n__s(y0), n__dbls(x0))) → SEL(s(y0), dbls(activate(x0)))
ACTIVATE(n__indx(n__sel(x0, x1), y1)) → INDX(sel(activate(x0), activate(x1)), y1)
The TRS R consists of the following rules:
dbl(0) → 0
dbl(s(X)) → s(n__s(n__dbl(activate(X))))
dbls(nil) → nil
dbls(cons(X, Y)) → cons(n__dbl(activate(X)), n__dbls(activate(Y)))
sel(0, cons(X, Y)) → activate(X)
sel(s(X), cons(Y, Z)) → sel(activate(X), activate(Z))
indx(nil, X) → nil
indx(cons(X, Y), Z) → cons(n__sel(activate(X), activate(Z)), n__indx(activate(Y), activate(Z)))
from(X) → cons(activate(X), n__from(n__s(activate(X))))
s(X) → n__s(X)
dbl(X) → n__dbl(X)
dbls(X) → n__dbls(X)
sel(X1, X2) → n__sel(X1, X2)
indx(X1, X2) → n__indx(X1, X2)
from(X) → n__from(X)
activate(n__s(X)) → s(X)
activate(n__dbl(X)) → dbl(activate(X))
activate(n__dbls(X)) → dbls(activate(X))
activate(n__sel(X1, X2)) → sel(activate(X1), activate(X2))
activate(n__indx(X1, X2)) → indx(activate(X1), X2)
activate(n__from(X)) → from(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule SEL(s(n__dbl(x0)), cons(y1, y2)) → SEL(dbl(activate(x0)), activate(y2)) at position [1] we obtained the following new rules:
SEL(s(n__dbl(y0)), cons(y1, n__dbls(x0))) → SEL(dbl(activate(y0)), dbls(activate(x0)))
SEL(s(n__dbl(y0)), cons(y1, n__dbl(x0))) → SEL(dbl(activate(y0)), dbl(activate(x0)))
SEL(s(n__dbl(y0)), cons(y1, x0)) → SEL(dbl(activate(y0)), x0)
SEL(s(n__dbl(y0)), cons(y1, n__from(x0))) → SEL(dbl(activate(y0)), from(x0))
SEL(s(n__dbl(y0)), cons(y1, n__indx(x0, x1))) → SEL(dbl(activate(y0)), indx(activate(x0), x1))
SEL(s(n__dbl(y0)), cons(y1, n__sel(x0, x1))) → SEL(dbl(activate(y0)), sel(activate(x0), activate(x1)))
SEL(s(n__dbl(y0)), cons(y1, n__s(x0))) → SEL(dbl(activate(y0)), s(x0))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
Q DP problem:
The TRS P consists of the following rules:
INDX(cons(X, Y), Z) → ACTIVATE(Z)
SEL(s(X), cons(Y, Z)) → ACTIVATE(Z)
ACTIVATE(n__dbl(n__dbl(x0))) → DBL(dbl(activate(x0)))
ACTIVATE(n__sel(n__s(y0), n__dbl(x0))) → SEL(s(y0), dbl(activate(x0)))
ACTIVATE(n__sel(n__s(y0), n__indx(x0, x1))) → SEL(s(y0), indx(activate(x0), x1))
ACTIVATE(n__sel(n__indx(y0, y1), n__dbl(x0))) → SEL(indx(activate(y0), y1), dbl(activate(x0)))
ACTIVATE(n__dbl(X)) → ACTIVATE(X)
ACTIVATE(n__dbls(X)) → ACTIVATE(X)
SEL(0, cons(X, Y)) → ACTIVATE(X)
ACTIVATE(n__sel(n__dbls(y0), n__dbls(x0))) → SEL(dbls(activate(y0)), dbls(activate(x0)))
ACTIVATE(n__sel(y0, n__dbls(x0))) → SEL(y0, dbls(activate(x0)))
DBLS(cons(X, Y)) → ACTIVATE(Y)
SEL(s(n__dbl(y0)), cons(y1, n__dbls(x0))) → SEL(dbl(activate(y0)), dbls(activate(x0)))
ACTIVATE(n__sel(n__sel(y0, y1), n__s(x0))) → SEL(sel(activate(y0), activate(y1)), s(x0))
ACTIVATE(n__sel(y0, n__s(x0))) → SEL(y0, s(x0))
SEL(s(n__s(x0)), cons(y1, y2)) → SEL(s(x0), activate(y2))
SEL(s(n__dbl(y0)), cons(y1, n__from(x0))) → SEL(dbl(activate(y0)), from(x0))
ACTIVATE(n__sel(n__s(y0), x0)) → SEL(s(y0), x0)
ACTIVATE(n__from(X)) → FROM(X)
ACTIVATE(n__dbls(x0)) → DBLS(x0)
ACTIVATE(n__sel(n__s(y0), n__s(x0))) → SEL(s(y0), s(x0))
ACTIVATE(n__sel(n__indx(y0, y1), n__indx(x0, x1))) → SEL(indx(activate(y0), y1), indx(activate(x0), x1))
ACTIVATE(n__dbl(n__dbls(x0))) → DBL(dbls(activate(x0)))
ACTIVATE(n__sel(X1, X2)) → ACTIVATE(X2)
INDX(cons(X, Y), Z) → ACTIVATE(X)
ACTIVATE(n__sel(n__sel(y0, y1), n__from(x0))) → SEL(sel(activate(y0), activate(y1)), from(x0))
ACTIVATE(n__dbl(x0)) → DBL(x0)
SEL(s(n__dbl(y0)), cons(y1, n__sel(x0, x1))) → SEL(dbl(activate(y0)), sel(activate(x0), activate(x1)))
SEL(s(n__indx(x0, x1)), cons(y1, y2)) → SEL(indx(activate(x0), x1), activate(y2))
ACTIVATE(n__sel(n__dbl(y0), n__sel(x0, x1))) → SEL(dbl(activate(y0)), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__sel(y0, y1), n__dbl(x0))) → SEL(sel(activate(y0), activate(y1)), dbl(activate(x0)))
ACTIVATE(n__sel(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__dbls(n__from(x0))) → DBLS(from(x0))
ACTIVATE(n__sel(n__sel(y0, y1), x0)) → SEL(sel(activate(y0), activate(y1)), x0)
FROM(X) → ACTIVATE(X)
ACTIVATE(n__sel(n__s(y0), n__from(x0))) → SEL(s(y0), from(x0))
ACTIVATE(n__sel(n__dbl(y0), n__s(x0))) → SEL(dbl(activate(y0)), s(x0))
ACTIVATE(n__dbls(n__sel(x0, x1))) → DBLS(sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__dbl(y0), n__dbls(x0))) → SEL(dbl(activate(y0)), dbls(activate(x0)))
ACTIVATE(n__sel(n__dbls(y0), n__dbl(x0))) → SEL(dbls(activate(y0)), dbl(activate(x0)))
ACTIVATE(n__sel(n__dbl(y0), x0)) → SEL(dbl(activate(y0)), x0)
ACTIVATE(n__dbl(n__indx(x0, x1))) → DBL(indx(activate(x0), x1))
SEL(s(X), cons(Y, Z)) → ACTIVATE(X)
DBLS(cons(X, Y)) → ACTIVATE(X)
ACTIVATE(n__sel(n__dbls(y0), n__indx(x0, x1))) → SEL(dbls(activate(y0)), indx(activate(x0), x1))
SEL(s(n__dbl(y0)), cons(y1, x0)) → SEL(dbl(activate(y0)), x0)
DBL(s(X)) → ACTIVATE(X)
ACTIVATE(n__sel(n__indx(y0, y1), n__s(x0))) → SEL(indx(activate(y0), y1), s(x0))
ACTIVATE(n__sel(n__indx(y0, y1), n__sel(x0, x1))) → SEL(indx(activate(y0), y1), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__sel(y0, y1), n__sel(x0, x1))) → SEL(sel(activate(y0), activate(y1)), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(y0, n__from(x0))) → SEL(y0, from(x0))
ACTIVATE(n__sel(y0, n__sel(x0, x1))) → SEL(y0, sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__dbls(y0), n__s(x0))) → SEL(dbls(activate(y0)), s(x0))
ACTIVATE(n__sel(y0, n__dbl(x0))) → SEL(y0, dbl(activate(x0)))
ACTIVATE(n__sel(y0, x0)) → SEL(y0, x0)
ACTIVATE(n__dbls(n__dbl(x0))) → DBLS(dbl(activate(x0)))
ACTIVATE(n__dbls(n__indx(x0, x1))) → DBLS(indx(activate(x0), x1))
SEL(s(n__dbl(y0)), cons(y1, n__indx(x0, x1))) → SEL(dbl(activate(y0)), indx(activate(x0), x1))
ACTIVATE(n__dbls(n__dbls(x0))) → DBLS(dbls(activate(x0)))
ACTIVATE(n__sel(n__sel(y0, y1), n__indx(x0, x1))) → SEL(sel(activate(y0), activate(y1)), indx(activate(x0), x1))
ACTIVATE(n__sel(n__indx(y0, y1), x0)) → SEL(indx(activate(y0), y1), x0)
ACTIVATE(n__dbl(n__s(x0))) → DBL(s(x0))
ACTIVATE(n__sel(n__dbls(y0), x0)) → SEL(dbls(activate(y0)), x0)
SEL(s(n__dbl(y0)), cons(y1, n__dbl(x0))) → SEL(dbl(activate(y0)), dbl(activate(x0)))
ACTIVATE(n__sel(y0, n__indx(x0, x1))) → SEL(y0, indx(activate(x0), x1))
ACTIVATE(n__sel(n__indx(y0, y1), n__from(x0))) → SEL(indx(activate(y0), y1), from(x0))
ACTIVATE(n__sel(n__s(y0), n__sel(x0, x1))) → SEL(s(y0), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__dbls(y0), n__from(x0))) → SEL(dbls(activate(y0)), from(x0))
SEL(s(n__from(x0)), cons(y1, y2)) → SEL(from(x0), activate(y2))
ACTIVATE(n__indx(x0, y1)) → INDX(x0, y1)
ACTIVATE(n__dbl(n__sel(x0, x1))) → DBL(sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__dbl(y0), n__dbl(x0))) → SEL(dbl(activate(y0)), dbl(activate(x0)))
SEL(s(n__dbls(x0)), cons(y1, y2)) → SEL(dbls(activate(x0)), activate(y2))
ACTIVATE(n__sel(n__sel(y0, y1), n__dbls(x0))) → SEL(sel(activate(y0), activate(y1)), dbls(activate(x0)))
ACTIVATE(n__sel(n__dbls(y0), n__sel(x0, x1))) → SEL(dbls(activate(y0)), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__indx(y0, y1), n__dbls(x0))) → SEL(indx(activate(y0), y1), dbls(activate(x0)))
ACTIVATE(n__sel(n__dbl(y0), n__from(x0))) → SEL(dbl(activate(y0)), from(x0))
SEL(s(n__sel(x0, x1)), cons(y1, y2)) → SEL(sel(activate(x0), activate(x1)), activate(y2))
ACTIVATE(n__indx(n__dbls(x0), y1)) → INDX(dbls(activate(x0)), y1)
ACTIVATE(n__indx(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__indx(n__from(x0), y1)) → INDX(from(x0), y1)
ACTIVATE(n__indx(n__dbl(x0), y1)) → INDX(dbl(activate(x0)), y1)
INDX(cons(X, Y), Z) → ACTIVATE(Y)
SEL(s(x0), cons(y1, y2)) → SEL(x0, activate(y2))
ACTIVATE(n__sel(n__dbl(y0), n__indx(x0, x1))) → SEL(dbl(activate(y0)), indx(activate(x0), x1))
ACTIVATE(n__indx(n__indx(x0, x1), y1)) → INDX(indx(activate(x0), x1), y1)
ACTIVATE(n__sel(n__s(y0), n__dbls(x0))) → SEL(s(y0), dbls(activate(x0)))
SEL(s(n__dbl(y0)), cons(y1, n__s(x0))) → SEL(dbl(activate(y0)), s(x0))
ACTIVATE(n__indx(n__sel(x0, x1), y1)) → INDX(sel(activate(x0), activate(x1)), y1)
The TRS R consists of the following rules:
dbl(0) → 0
dbl(s(X)) → s(n__s(n__dbl(activate(X))))
dbls(nil) → nil
dbls(cons(X, Y)) → cons(n__dbl(activate(X)), n__dbls(activate(Y)))
sel(0, cons(X, Y)) → activate(X)
sel(s(X), cons(Y, Z)) → sel(activate(X), activate(Z))
indx(nil, X) → nil
indx(cons(X, Y), Z) → cons(n__sel(activate(X), activate(Z)), n__indx(activate(Y), activate(Z)))
from(X) → cons(activate(X), n__from(n__s(activate(X))))
s(X) → n__s(X)
dbl(X) → n__dbl(X)
dbls(X) → n__dbls(X)
sel(X1, X2) → n__sel(X1, X2)
indx(X1, X2) → n__indx(X1, X2)
from(X) → n__from(X)
activate(n__s(X)) → s(X)
activate(n__dbl(X)) → dbl(activate(X))
activate(n__dbls(X)) → dbls(activate(X))
activate(n__sel(X1, X2)) → sel(activate(X1), activate(X2))
activate(n__indx(X1, X2)) → indx(activate(X1), X2)
activate(n__from(X)) → from(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule SEL(s(n__s(x0)), cons(y1, y2)) → SEL(s(x0), activate(y2)) at position [1] we obtained the following new rules:
SEL(s(n__s(y0)), cons(y1, n__from(x0))) → SEL(s(y0), from(x0))
SEL(s(n__s(y0)), cons(y1, n__s(x0))) → SEL(s(y0), s(x0))
SEL(s(n__s(y0)), cons(y1, x0)) → SEL(s(y0), x0)
SEL(s(n__s(y0)), cons(y1, n__sel(x0, x1))) → SEL(s(y0), sel(activate(x0), activate(x1)))
SEL(s(n__s(y0)), cons(y1, n__dbl(x0))) → SEL(s(y0), dbl(activate(x0)))
SEL(s(n__s(y0)), cons(y1, n__dbls(x0))) → SEL(s(y0), dbls(activate(x0)))
SEL(s(n__s(y0)), cons(y1, n__indx(x0, x1))) → SEL(s(y0), indx(activate(x0), x1))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
Q DP problem:
The TRS P consists of the following rules:
INDX(cons(X, Y), Z) → ACTIVATE(Z)
SEL(s(n__s(y0)), cons(y1, n__s(x0))) → SEL(s(y0), s(x0))
ACTIVATE(n__sel(n__s(y0), n__indx(x0, x1))) → SEL(s(y0), indx(activate(x0), x1))
ACTIVATE(n__sel(n__s(y0), n__dbl(x0))) → SEL(s(y0), dbl(activate(x0)))
ACTIVATE(n__dbl(n__dbl(x0))) → DBL(dbl(activate(x0)))
SEL(s(X), cons(Y, Z)) → ACTIVATE(Z)
ACTIVATE(n__sel(n__indx(y0, y1), n__dbl(x0))) → SEL(indx(activate(y0), y1), dbl(activate(x0)))
ACTIVATE(n__dbls(X)) → ACTIVATE(X)
ACTIVATE(n__dbl(X)) → ACTIVATE(X)
SEL(0, cons(X, Y)) → ACTIVATE(X)
ACTIVATE(n__sel(n__dbls(y0), n__dbls(x0))) → SEL(dbls(activate(y0)), dbls(activate(x0)))
ACTIVATE(n__sel(y0, n__dbls(x0))) → SEL(y0, dbls(activate(x0)))
DBLS(cons(X, Y)) → ACTIVATE(Y)
ACTIVATE(n__sel(n__sel(y0, y1), n__s(x0))) → SEL(sel(activate(y0), activate(y1)), s(x0))
SEL(s(n__dbl(y0)), cons(y1, n__dbls(x0))) → SEL(dbl(activate(y0)), dbls(activate(x0)))
ACTIVATE(n__sel(y0, n__s(x0))) → SEL(y0, s(x0))
ACTIVATE(n__sel(n__s(y0), x0)) → SEL(s(y0), x0)
SEL(s(n__dbl(y0)), cons(y1, n__from(x0))) → SEL(dbl(activate(y0)), from(x0))
ACTIVATE(n__from(X)) → FROM(X)
ACTIVATE(n__sel(n__s(y0), n__s(x0))) → SEL(s(y0), s(x0))
ACTIVATE(n__dbls(x0)) → DBLS(x0)
ACTIVATE(n__sel(n__indx(y0, y1), n__indx(x0, x1))) → SEL(indx(activate(y0), y1), indx(activate(x0), x1))
SEL(s(n__s(y0)), cons(y1, n__from(x0))) → SEL(s(y0), from(x0))
ACTIVATE(n__sel(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__dbl(n__dbls(x0))) → DBL(dbls(activate(x0)))
ACTIVATE(n__sel(n__sel(y0, y1), n__from(x0))) → SEL(sel(activate(y0), activate(y1)), from(x0))
INDX(cons(X, Y), Z) → ACTIVATE(X)
ACTIVATE(n__dbl(x0)) → DBL(x0)
SEL(s(n__s(y0)), cons(y1, n__sel(x0, x1))) → SEL(s(y0), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__sel(y0, y1), n__dbl(x0))) → SEL(sel(activate(y0), activate(y1)), dbl(activate(x0)))
ACTIVATE(n__sel(n__dbl(y0), n__sel(x0, x1))) → SEL(dbl(activate(y0)), sel(activate(x0), activate(x1)))
SEL(s(n__indx(x0, x1)), cons(y1, y2)) → SEL(indx(activate(x0), x1), activate(y2))
SEL(s(n__dbl(y0)), cons(y1, n__sel(x0, x1))) → SEL(dbl(activate(y0)), sel(activate(x0), activate(x1)))
SEL(s(n__s(y0)), cons(y1, n__dbl(x0))) → SEL(s(y0), dbl(activate(x0)))
ACTIVATE(n__dbls(n__from(x0))) → DBLS(from(x0))
ACTIVATE(n__sel(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__sel(n__sel(y0, y1), x0)) → SEL(sel(activate(y0), activate(y1)), x0)
ACTIVATE(n__sel(n__s(y0), n__from(x0))) → SEL(s(y0), from(x0))
FROM(X) → ACTIVATE(X)
ACTIVATE(n__dbls(n__sel(x0, x1))) → DBLS(sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__dbl(y0), n__s(x0))) → SEL(dbl(activate(y0)), s(x0))
SEL(s(n__s(y0)), cons(y1, n__indx(x0, x1))) → SEL(s(y0), indx(activate(x0), x1))
ACTIVATE(n__sel(n__dbls(y0), n__dbl(x0))) → SEL(dbls(activate(y0)), dbl(activate(x0)))
ACTIVATE(n__sel(n__dbl(y0), n__dbls(x0))) → SEL(dbl(activate(y0)), dbls(activate(x0)))
ACTIVATE(n__sel(n__dbl(y0), x0)) → SEL(dbl(activate(y0)), x0)
ACTIVATE(n__dbl(n__indx(x0, x1))) → DBL(indx(activate(x0), x1))
DBLS(cons(X, Y)) → ACTIVATE(X)
SEL(s(X), cons(Y, Z)) → ACTIVATE(X)
ACTIVATE(n__sel(n__dbls(y0), n__indx(x0, x1))) → SEL(dbls(activate(y0)), indx(activate(x0), x1))
ACTIVATE(n__sel(n__indx(y0, y1), n__s(x0))) → SEL(indx(activate(y0), y1), s(x0))
DBL(s(X)) → ACTIVATE(X)
SEL(s(n__dbl(y0)), cons(y1, x0)) → SEL(dbl(activate(y0)), x0)
ACTIVATE(n__sel(n__indx(y0, y1), n__sel(x0, x1))) → SEL(indx(activate(y0), y1), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(y0, n__from(x0))) → SEL(y0, from(x0))
ACTIVATE(n__sel(n__sel(y0, y1), n__sel(x0, x1))) → SEL(sel(activate(y0), activate(y1)), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(y0, n__sel(x0, x1))) → SEL(y0, sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__dbls(y0), n__s(x0))) → SEL(dbls(activate(y0)), s(x0))
ACTIVATE(n__sel(y0, x0)) → SEL(y0, x0)
ACTIVATE(n__sel(y0, n__dbl(x0))) → SEL(y0, dbl(activate(x0)))
ACTIVATE(n__dbls(n__dbl(x0))) → DBLS(dbl(activate(x0)))
ACTIVATE(n__dbls(n__indx(x0, x1))) → DBLS(indx(activate(x0), x1))
ACTIVATE(n__dbls(n__dbls(x0))) → DBLS(dbls(activate(x0)))
SEL(s(n__dbl(y0)), cons(y1, n__indx(x0, x1))) → SEL(dbl(activate(y0)), indx(activate(x0), x1))
ACTIVATE(n__sel(n__sel(y0, y1), n__indx(x0, x1))) → SEL(sel(activate(y0), activate(y1)), indx(activate(x0), x1))
ACTIVATE(n__sel(n__indx(y0, y1), x0)) → SEL(indx(activate(y0), y1), x0)
ACTIVATE(n__dbl(n__s(x0))) → DBL(s(x0))
ACTIVATE(n__sel(n__dbls(y0), x0)) → SEL(dbls(activate(y0)), x0)
ACTIVATE(n__sel(y0, n__indx(x0, x1))) → SEL(y0, indx(activate(x0), x1))
SEL(s(n__dbl(y0)), cons(y1, n__dbl(x0))) → SEL(dbl(activate(y0)), dbl(activate(x0)))
ACTIVATE(n__sel(n__s(y0), n__sel(x0, x1))) → SEL(s(y0), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__indx(y0, y1), n__from(x0))) → SEL(indx(activate(y0), y1), from(x0))
ACTIVATE(n__sel(n__dbls(y0), n__from(x0))) → SEL(dbls(activate(y0)), from(x0))
SEL(s(n__from(x0)), cons(y1, y2)) → SEL(from(x0), activate(y2))
ACTIVATE(n__dbl(n__sel(x0, x1))) → DBL(sel(activate(x0), activate(x1)))
ACTIVATE(n__indx(x0, y1)) → INDX(x0, y1)
ACTIVATE(n__sel(n__dbl(y0), n__dbl(x0))) → SEL(dbl(activate(y0)), dbl(activate(x0)))
SEL(s(n__dbls(x0)), cons(y1, y2)) → SEL(dbls(activate(x0)), activate(y2))
ACTIVATE(n__sel(n__dbls(y0), n__sel(x0, x1))) → SEL(dbls(activate(y0)), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__sel(y0, y1), n__dbls(x0))) → SEL(sel(activate(y0), activate(y1)), dbls(activate(x0)))
ACTIVATE(n__sel(n__indx(y0, y1), n__dbls(x0))) → SEL(indx(activate(y0), y1), dbls(activate(x0)))
ACTIVATE(n__sel(n__dbl(y0), n__from(x0))) → SEL(dbl(activate(y0)), from(x0))
SEL(s(n__sel(x0, x1)), cons(y1, y2)) → SEL(sel(activate(x0), activate(x1)), activate(y2))
SEL(s(n__s(y0)), cons(y1, n__dbls(x0))) → SEL(s(y0), dbls(activate(x0)))
ACTIVATE(n__indx(n__dbls(x0), y1)) → INDX(dbls(activate(x0)), y1)
ACTIVATE(n__indx(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__indx(n__from(x0), y1)) → INDX(from(x0), y1)
ACTIVATE(n__indx(n__dbl(x0), y1)) → INDX(dbl(activate(x0)), y1)
SEL(s(n__s(y0)), cons(y1, x0)) → SEL(s(y0), x0)
INDX(cons(X, Y), Z) → ACTIVATE(Y)
ACTIVATE(n__sel(n__dbl(y0), n__indx(x0, x1))) → SEL(dbl(activate(y0)), indx(activate(x0), x1))
SEL(s(x0), cons(y1, y2)) → SEL(x0, activate(y2))
ACTIVATE(n__indx(n__indx(x0, x1), y1)) → INDX(indx(activate(x0), x1), y1)
ACTIVATE(n__sel(n__s(y0), n__dbls(x0))) → SEL(s(y0), dbls(activate(x0)))
SEL(s(n__dbl(y0)), cons(y1, n__s(x0))) → SEL(dbl(activate(y0)), s(x0))
ACTIVATE(n__indx(n__sel(x0, x1), y1)) → INDX(sel(activate(x0), activate(x1)), y1)
The TRS R consists of the following rules:
dbl(0) → 0
dbl(s(X)) → s(n__s(n__dbl(activate(X))))
dbls(nil) → nil
dbls(cons(X, Y)) → cons(n__dbl(activate(X)), n__dbls(activate(Y)))
sel(0, cons(X, Y)) → activate(X)
sel(s(X), cons(Y, Z)) → sel(activate(X), activate(Z))
indx(nil, X) → nil
indx(cons(X, Y), Z) → cons(n__sel(activate(X), activate(Z)), n__indx(activate(Y), activate(Z)))
from(X) → cons(activate(X), n__from(n__s(activate(X))))
s(X) → n__s(X)
dbl(X) → n__dbl(X)
dbls(X) → n__dbls(X)
sel(X1, X2) → n__sel(X1, X2)
indx(X1, X2) → n__indx(X1, X2)
from(X) → n__from(X)
activate(n__s(X)) → s(X)
activate(n__dbl(X)) → dbl(activate(X))
activate(n__dbls(X)) → dbls(activate(X))
activate(n__sel(X1, X2)) → sel(activate(X1), activate(X2))
activate(n__indx(X1, X2)) → indx(activate(X1), X2)
activate(n__from(X)) → from(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule SEL(s(n__indx(x0, x1)), cons(y1, y2)) → SEL(indx(activate(x0), x1), activate(y2)) at position [1] we obtained the following new rules:
SEL(s(n__indx(y0, y1)), cons(y2, x0)) → SEL(indx(activate(y0), y1), x0)
SEL(s(n__indx(y0, y1)), cons(y2, n__indx(x0, x1))) → SEL(indx(activate(y0), y1), indx(activate(x0), x1))
SEL(s(n__indx(y0, y1)), cons(y2, n__dbls(x0))) → SEL(indx(activate(y0), y1), dbls(activate(x0)))
SEL(s(n__indx(y0, y1)), cons(y2, n__from(x0))) → SEL(indx(activate(y0), y1), from(x0))
SEL(s(n__indx(y0, y1)), cons(y2, n__s(x0))) → SEL(indx(activate(y0), y1), s(x0))
SEL(s(n__indx(y0, y1)), cons(y2, n__sel(x0, x1))) → SEL(indx(activate(y0), y1), sel(activate(x0), activate(x1)))
SEL(s(n__indx(y0, y1)), cons(y2, n__dbl(x0))) → SEL(indx(activate(y0), y1), dbl(activate(x0)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE(n__sel(n__s(y0), n__indx(x0, x1))) → SEL(s(y0), indx(activate(x0), x1))
ACTIVATE(n__sel(n__s(y0), n__dbl(x0))) → SEL(s(y0), dbl(activate(x0)))
ACTIVATE(n__dbl(n__dbl(x0))) → DBL(dbl(activate(x0)))
SEL(s(X), cons(Y, Z)) → ACTIVATE(Z)
ACTIVATE(n__dbl(X)) → ACTIVATE(X)
SEL(s(n__indx(y0, y1)), cons(y2, n__sel(x0, x1))) → SEL(indx(activate(y0), y1), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__s(y0), x0)) → SEL(s(y0), x0)
ACTIVATE(n__from(X)) → FROM(X)
ACTIVATE(n__sel(n__s(y0), n__s(x0))) → SEL(s(y0), s(x0))
ACTIVATE(n__dbls(x0)) → DBLS(x0)
ACTIVATE(n__sel(n__indx(y0, y1), n__indx(x0, x1))) → SEL(indx(activate(y0), y1), indx(activate(x0), x1))
ACTIVATE(n__dbl(n__dbls(x0))) → DBL(dbls(activate(x0)))
INDX(cons(X, Y), Z) → ACTIVATE(X)
ACTIVATE(n__dbl(x0)) → DBL(x0)
SEL(s(n__s(y0)), cons(y1, n__sel(x0, x1))) → SEL(s(y0), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__sel(y0, y1), n__dbl(x0))) → SEL(sel(activate(y0), activate(y1)), dbl(activate(x0)))
ACTIVATE(n__sel(n__dbl(y0), n__sel(x0, x1))) → SEL(dbl(activate(y0)), sel(activate(x0), activate(x1)))
SEL(s(n__s(y0)), cons(y1, n__dbl(x0))) → SEL(s(y0), dbl(activate(x0)))
ACTIVATE(n__dbls(n__from(x0))) → DBLS(from(x0))
ACTIVATE(n__sel(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__sel(n__s(y0), n__from(x0))) → SEL(s(y0), from(x0))
SEL(s(n__s(y0)), cons(y1, n__indx(x0, x1))) → SEL(s(y0), indx(activate(x0), x1))
SEL(s(X), cons(Y, Z)) → ACTIVATE(X)
ACTIVATE(n__sel(n__indx(y0, y1), n__s(x0))) → SEL(indx(activate(y0), y1), s(x0))
DBL(s(X)) → ACTIVATE(X)
SEL(s(n__dbl(y0)), cons(y1, x0)) → SEL(dbl(activate(y0)), x0)
ACTIVATE(n__sel(n__indx(y0, y1), n__sel(x0, x1))) → SEL(indx(activate(y0), y1), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(y0, n__from(x0))) → SEL(y0, from(x0))
ACTIVATE(n__sel(y0, x0)) → SEL(y0, x0)
ACTIVATE(n__dbls(n__dbls(x0))) → DBLS(dbls(activate(x0)))
SEL(s(n__dbl(y0)), cons(y1, n__indx(x0, x1))) → SEL(dbl(activate(y0)), indx(activate(x0), x1))
ACTIVATE(n__sel(n__indx(y0, y1), x0)) → SEL(indx(activate(y0), y1), x0)
ACTIVATE(n__dbl(n__s(x0))) → DBL(s(x0))
ACTIVATE(n__sel(y0, n__indx(x0, x1))) → SEL(y0, indx(activate(x0), x1))
SEL(s(n__dbl(y0)), cons(y1, n__dbl(x0))) → SEL(dbl(activate(y0)), dbl(activate(x0)))
ACTIVATE(n__sel(n__indx(y0, y1), n__from(x0))) → SEL(indx(activate(y0), y1), from(x0))
ACTIVATE(n__sel(n__dbls(y0), n__from(x0))) → SEL(dbls(activate(y0)), from(x0))
SEL(s(n__from(x0)), cons(y1, y2)) → SEL(from(x0), activate(y2))
ACTIVATE(n__dbl(n__sel(x0, x1))) → DBL(sel(activate(x0), activate(x1)))
SEL(s(n__sel(x0, x1)), cons(y1, y2)) → SEL(sel(activate(x0), activate(x1)), activate(y2))
SEL(s(n__s(y0)), cons(y1, n__dbls(x0))) → SEL(s(y0), dbls(activate(x0)))
ACTIVATE(n__indx(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__indx(n__from(x0), y1)) → INDX(from(x0), y1)
SEL(s(n__indx(y0, y1)), cons(y2, x0)) → SEL(indx(activate(y0), y1), x0)
ACTIVATE(n__indx(n__dbl(x0), y1)) → INDX(dbl(activate(x0)), y1)
SEL(s(n__s(y0)), cons(y1, x0)) → SEL(s(y0), x0)
INDX(cons(X, Y), Z) → ACTIVATE(Y)
ACTIVATE(n__sel(n__dbl(y0), n__indx(x0, x1))) → SEL(dbl(activate(y0)), indx(activate(x0), x1))
ACTIVATE(n__indx(n__indx(x0, x1), y1)) → INDX(indx(activate(x0), x1), y1)
ACTIVATE(n__sel(n__s(y0), n__dbls(x0))) → SEL(s(y0), dbls(activate(x0)))
SEL(s(n__dbl(y0)), cons(y1, n__s(x0))) → SEL(dbl(activate(y0)), s(x0))
ACTIVATE(n__indx(n__sel(x0, x1), y1)) → INDX(sel(activate(x0), activate(x1)), y1)
INDX(cons(X, Y), Z) → ACTIVATE(Z)
SEL(s(n__s(y0)), cons(y1, n__s(x0))) → SEL(s(y0), s(x0))
ACTIVATE(n__sel(n__indx(y0, y1), n__dbl(x0))) → SEL(indx(activate(y0), y1), dbl(activate(x0)))
ACTIVATE(n__dbls(X)) → ACTIVATE(X)
SEL(0, cons(X, Y)) → ACTIVATE(X)
ACTIVATE(n__sel(n__dbls(y0), n__dbls(x0))) → SEL(dbls(activate(y0)), dbls(activate(x0)))
ACTIVATE(n__sel(y0, n__dbls(x0))) → SEL(y0, dbls(activate(x0)))
DBLS(cons(X, Y)) → ACTIVATE(Y)
ACTIVATE(n__sel(n__sel(y0, y1), n__s(x0))) → SEL(sel(activate(y0), activate(y1)), s(x0))
SEL(s(n__dbl(y0)), cons(y1, n__dbls(x0))) → SEL(dbl(activate(y0)), dbls(activate(x0)))
ACTIVATE(n__sel(y0, n__s(x0))) → SEL(y0, s(x0))
SEL(s(n__dbl(y0)), cons(y1, n__from(x0))) → SEL(dbl(activate(y0)), from(x0))
SEL(s(n__s(y0)), cons(y1, n__from(x0))) → SEL(s(y0), from(x0))
ACTIVATE(n__sel(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__sel(n__sel(y0, y1), n__from(x0))) → SEL(sel(activate(y0), activate(y1)), from(x0))
SEL(s(n__dbl(y0)), cons(y1, n__sel(x0, x1))) → SEL(dbl(activate(y0)), sel(activate(x0), activate(x1)))
SEL(s(n__indx(y0, y1)), cons(y2, n__indx(x0, x1))) → SEL(indx(activate(y0), y1), indx(activate(x0), x1))
SEL(s(n__indx(y0, y1)), cons(y2, n__from(x0))) → SEL(indx(activate(y0), y1), from(x0))
ACTIVATE(n__sel(n__sel(y0, y1), x0)) → SEL(sel(activate(y0), activate(y1)), x0)
FROM(X) → ACTIVATE(X)
ACTIVATE(n__dbls(n__sel(x0, x1))) → DBLS(sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__dbl(y0), n__s(x0))) → SEL(dbl(activate(y0)), s(x0))
ACTIVATE(n__sel(n__dbls(y0), n__dbl(x0))) → SEL(dbls(activate(y0)), dbl(activate(x0)))
ACTIVATE(n__sel(n__dbl(y0), n__dbls(x0))) → SEL(dbl(activate(y0)), dbls(activate(x0)))
ACTIVATE(n__sel(n__dbl(y0), x0)) → SEL(dbl(activate(y0)), x0)
ACTIVATE(n__dbl(n__indx(x0, x1))) → DBL(indx(activate(x0), x1))
DBLS(cons(X, Y)) → ACTIVATE(X)
ACTIVATE(n__sel(n__dbls(y0), n__indx(x0, x1))) → SEL(dbls(activate(y0)), indx(activate(x0), x1))
ACTIVATE(n__sel(n__sel(y0, y1), n__sel(x0, x1))) → SEL(sel(activate(y0), activate(y1)), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(y0, n__sel(x0, x1))) → SEL(y0, sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__dbls(y0), n__s(x0))) → SEL(dbls(activate(y0)), s(x0))
ACTIVATE(n__sel(y0, n__dbl(x0))) → SEL(y0, dbl(activate(x0)))
ACTIVATE(n__dbls(n__dbl(x0))) → DBLS(dbl(activate(x0)))
ACTIVATE(n__dbls(n__indx(x0, x1))) → DBLS(indx(activate(x0), x1))
ACTIVATE(n__sel(n__sel(y0, y1), n__indx(x0, x1))) → SEL(sel(activate(y0), activate(y1)), indx(activate(x0), x1))
SEL(s(n__indx(y0, y1)), cons(y2, n__s(x0))) → SEL(indx(activate(y0), y1), s(x0))
ACTIVATE(n__sel(n__dbls(y0), x0)) → SEL(dbls(activate(y0)), x0)
ACTIVATE(n__sel(n__s(y0), n__sel(x0, x1))) → SEL(s(y0), sel(activate(x0), activate(x1)))
SEL(s(n__indx(y0, y1)), cons(y2, n__dbls(x0))) → SEL(indx(activate(y0), y1), dbls(activate(x0)))
ACTIVATE(n__indx(x0, y1)) → INDX(x0, y1)
SEL(s(n__indx(y0, y1)), cons(y2, n__dbl(x0))) → SEL(indx(activate(y0), y1), dbl(activate(x0)))
ACTIVATE(n__sel(n__dbl(y0), n__dbl(x0))) → SEL(dbl(activate(y0)), dbl(activate(x0)))
SEL(s(n__dbls(x0)), cons(y1, y2)) → SEL(dbls(activate(x0)), activate(y2))
ACTIVATE(n__sel(n__dbls(y0), n__sel(x0, x1))) → SEL(dbls(activate(y0)), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__sel(y0, y1), n__dbls(x0))) → SEL(sel(activate(y0), activate(y1)), dbls(activate(x0)))
ACTIVATE(n__sel(n__indx(y0, y1), n__dbls(x0))) → SEL(indx(activate(y0), y1), dbls(activate(x0)))
ACTIVATE(n__sel(n__dbl(y0), n__from(x0))) → SEL(dbl(activate(y0)), from(x0))
ACTIVATE(n__indx(n__dbls(x0), y1)) → INDX(dbls(activate(x0)), y1)
SEL(s(x0), cons(y1, y2)) → SEL(x0, activate(y2))
The TRS R consists of the following rules:
dbl(0) → 0
dbl(s(X)) → s(n__s(n__dbl(activate(X))))
dbls(nil) → nil
dbls(cons(X, Y)) → cons(n__dbl(activate(X)), n__dbls(activate(Y)))
sel(0, cons(X, Y)) → activate(X)
sel(s(X), cons(Y, Z)) → sel(activate(X), activate(Z))
indx(nil, X) → nil
indx(cons(X, Y), Z) → cons(n__sel(activate(X), activate(Z)), n__indx(activate(Y), activate(Z)))
from(X) → cons(activate(X), n__from(n__s(activate(X))))
s(X) → n__s(X)
dbl(X) → n__dbl(X)
dbls(X) → n__dbls(X)
sel(X1, X2) → n__sel(X1, X2)
indx(X1, X2) → n__indx(X1, X2)
from(X) → n__from(X)
activate(n__s(X)) → s(X)
activate(n__dbl(X)) → dbl(activate(X))
activate(n__dbls(X)) → dbls(activate(X))
activate(n__sel(X1, X2)) → sel(activate(X1), activate(X2))
activate(n__indx(X1, X2)) → indx(activate(X1), X2)
activate(n__from(X)) → from(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule SEL(s(n__sel(x0, x1)), cons(y1, y2)) → SEL(sel(activate(x0), activate(x1)), activate(y2)) at position [1] we obtained the following new rules:
SEL(s(n__sel(y0, y1)), cons(y2, n__dbls(x0))) → SEL(sel(activate(y0), activate(y1)), dbls(activate(x0)))
SEL(s(n__sel(y0, y1)), cons(y2, n__s(x0))) → SEL(sel(activate(y0), activate(y1)), s(x0))
SEL(s(n__sel(y0, y1)), cons(y2, n__dbl(x0))) → SEL(sel(activate(y0), activate(y1)), dbl(activate(x0)))
SEL(s(n__sel(y0, y1)), cons(y2, n__from(x0))) → SEL(sel(activate(y0), activate(y1)), from(x0))
SEL(s(n__sel(y0, y1)), cons(y2, n__indx(x0, x1))) → SEL(sel(activate(y0), activate(y1)), indx(activate(x0), x1))
SEL(s(n__sel(y0, y1)), cons(y2, n__sel(x0, x1))) → SEL(sel(activate(y0), activate(y1)), sel(activate(x0), activate(x1)))
SEL(s(n__sel(y0, y1)), cons(y2, x0)) → SEL(sel(activate(y0), activate(y1)), x0)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
Q DP problem:
The TRS P consists of the following rules:
SEL(s(X), cons(Y, Z)) → ACTIVATE(Z)
ACTIVATE(n__dbl(n__dbl(x0))) → DBL(dbl(activate(x0)))
ACTIVATE(n__sel(n__s(y0), n__dbl(x0))) → SEL(s(y0), dbl(activate(x0)))
ACTIVATE(n__sel(n__s(y0), n__indx(x0, x1))) → SEL(s(y0), indx(activate(x0), x1))
SEL(s(n__sel(y0, y1)), cons(y2, n__dbl(x0))) → SEL(sel(activate(y0), activate(y1)), dbl(activate(x0)))
ACTIVATE(n__dbl(X)) → ACTIVATE(X)
SEL(s(n__indx(y0, y1)), cons(y2, n__sel(x0, x1))) → SEL(indx(activate(y0), y1), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__s(y0), x0)) → SEL(s(y0), x0)
ACTIVATE(n__from(X)) → FROM(X)
SEL(s(n__sel(y0, y1)), cons(y2, n__sel(x0, x1))) → SEL(sel(activate(y0), activate(y1)), sel(activate(x0), activate(x1)))
ACTIVATE(n__dbls(x0)) → DBLS(x0)
ACTIVATE(n__sel(n__s(y0), n__s(x0))) → SEL(s(y0), s(x0))
SEL(s(n__sel(y0, y1)), cons(y2, n__dbls(x0))) → SEL(sel(activate(y0), activate(y1)), dbls(activate(x0)))
ACTIVATE(n__sel(n__indx(y0, y1), n__indx(x0, x1))) → SEL(indx(activate(y0), y1), indx(activate(x0), x1))
ACTIVATE(n__dbl(n__dbls(x0))) → DBL(dbls(activate(x0)))
INDX(cons(X, Y), Z) → ACTIVATE(X)
ACTIVATE(n__dbl(x0)) → DBL(x0)
SEL(s(n__s(y0)), cons(y1, n__sel(x0, x1))) → SEL(s(y0), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__dbl(y0), n__sel(x0, x1))) → SEL(dbl(activate(y0)), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__sel(y0, y1), n__dbl(x0))) → SEL(sel(activate(y0), activate(y1)), dbl(activate(x0)))
ACTIVATE(n__sel(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__dbls(n__from(x0))) → DBLS(from(x0))
SEL(s(n__s(y0)), cons(y1, n__dbl(x0))) → SEL(s(y0), dbl(activate(x0)))
ACTIVATE(n__sel(n__s(y0), n__from(x0))) → SEL(s(y0), from(x0))
SEL(s(n__s(y0)), cons(y1, n__indx(x0, x1))) → SEL(s(y0), indx(activate(x0), x1))
SEL(s(n__sel(y0, y1)), cons(y2, n__from(x0))) → SEL(sel(activate(y0), activate(y1)), from(x0))
SEL(s(X), cons(Y, Z)) → ACTIVATE(X)
SEL(s(n__dbl(y0)), cons(y1, x0)) → SEL(dbl(activate(y0)), x0)
DBL(s(X)) → ACTIVATE(X)
ACTIVATE(n__sel(n__indx(y0, y1), n__s(x0))) → SEL(indx(activate(y0), y1), s(x0))
ACTIVATE(n__sel(n__indx(y0, y1), n__sel(x0, x1))) → SEL(indx(activate(y0), y1), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(y0, n__from(x0))) → SEL(y0, from(x0))
ACTIVATE(n__sel(y0, x0)) → SEL(y0, x0)
SEL(s(n__sel(y0, y1)), cons(y2, n__s(x0))) → SEL(sel(activate(y0), activate(y1)), s(x0))
SEL(s(n__dbl(y0)), cons(y1, n__indx(x0, x1))) → SEL(dbl(activate(y0)), indx(activate(x0), x1))
ACTIVATE(n__dbls(n__dbls(x0))) → DBLS(dbls(activate(x0)))
ACTIVATE(n__sel(n__indx(y0, y1), x0)) → SEL(indx(activate(y0), y1), x0)
ACTIVATE(n__dbl(n__s(x0))) → DBL(s(x0))
SEL(s(n__dbl(y0)), cons(y1, n__dbl(x0))) → SEL(dbl(activate(y0)), dbl(activate(x0)))
ACTIVATE(n__sel(y0, n__indx(x0, x1))) → SEL(y0, indx(activate(x0), x1))
ACTIVATE(n__sel(n__indx(y0, y1), n__from(x0))) → SEL(indx(activate(y0), y1), from(x0))
SEL(s(n__sel(y0, y1)), cons(y2, n__indx(x0, x1))) → SEL(sel(activate(y0), activate(y1)), indx(activate(x0), x1))
ACTIVATE(n__sel(n__dbls(y0), n__from(x0))) → SEL(dbls(activate(y0)), from(x0))
SEL(s(n__from(x0)), cons(y1, y2)) → SEL(from(x0), activate(y2))
ACTIVATE(n__dbl(n__sel(x0, x1))) → DBL(sel(activate(x0), activate(x1)))
SEL(s(n__s(y0)), cons(y1, n__dbls(x0))) → SEL(s(y0), dbls(activate(x0)))
ACTIVATE(n__indx(X1, X2)) → ACTIVATE(X1)
SEL(s(n__indx(y0, y1)), cons(y2, x0)) → SEL(indx(activate(y0), y1), x0)
ACTIVATE(n__indx(n__from(x0), y1)) → INDX(from(x0), y1)
ACTIVATE(n__indx(n__dbl(x0), y1)) → INDX(dbl(activate(x0)), y1)
SEL(s(n__s(y0)), cons(y1, x0)) → SEL(s(y0), x0)
INDX(cons(X, Y), Z) → ACTIVATE(Y)
ACTIVATE(n__sel(n__dbl(y0), n__indx(x0, x1))) → SEL(dbl(activate(y0)), indx(activate(x0), x1))
ACTIVATE(n__indx(n__indx(x0, x1), y1)) → INDX(indx(activate(x0), x1), y1)
ACTIVATE(n__sel(n__s(y0), n__dbls(x0))) → SEL(s(y0), dbls(activate(x0)))
SEL(s(n__dbl(y0)), cons(y1, n__s(x0))) → SEL(dbl(activate(y0)), s(x0))
ACTIVATE(n__indx(n__sel(x0, x1), y1)) → INDX(sel(activate(x0), activate(x1)), y1)
INDX(cons(X, Y), Z) → ACTIVATE(Z)
SEL(s(n__s(y0)), cons(y1, n__s(x0))) → SEL(s(y0), s(x0))
ACTIVATE(n__sel(n__indx(y0, y1), n__dbl(x0))) → SEL(indx(activate(y0), y1), dbl(activate(x0)))
ACTIVATE(n__dbls(X)) → ACTIVATE(X)
SEL(0, cons(X, Y)) → ACTIVATE(X)
ACTIVATE(n__sel(n__dbls(y0), n__dbls(x0))) → SEL(dbls(activate(y0)), dbls(activate(x0)))
ACTIVATE(n__sel(y0, n__dbls(x0))) → SEL(y0, dbls(activate(x0)))
DBLS(cons(X, Y)) → ACTIVATE(Y)
SEL(s(n__dbl(y0)), cons(y1, n__dbls(x0))) → SEL(dbl(activate(y0)), dbls(activate(x0)))
ACTIVATE(n__sel(n__sel(y0, y1), n__s(x0))) → SEL(sel(activate(y0), activate(y1)), s(x0))
ACTIVATE(n__sel(y0, n__s(x0))) → SEL(y0, s(x0))
SEL(s(n__dbl(y0)), cons(y1, n__from(x0))) → SEL(dbl(activate(y0)), from(x0))
SEL(s(n__sel(y0, y1)), cons(y2, x0)) → SEL(sel(activate(y0), activate(y1)), x0)
ACTIVATE(n__sel(X1, X2)) → ACTIVATE(X2)
SEL(s(n__s(y0)), cons(y1, n__from(x0))) → SEL(s(y0), from(x0))
ACTIVATE(n__sel(n__sel(y0, y1), n__from(x0))) → SEL(sel(activate(y0), activate(y1)), from(x0))
SEL(s(n__dbl(y0)), cons(y1, n__sel(x0, x1))) → SEL(dbl(activate(y0)), sel(activate(x0), activate(x1)))
SEL(s(n__indx(y0, y1)), cons(y2, n__indx(x0, x1))) → SEL(indx(activate(y0), y1), indx(activate(x0), x1))
ACTIVATE(n__sel(n__sel(y0, y1), x0)) → SEL(sel(activate(y0), activate(y1)), x0)
SEL(s(n__indx(y0, y1)), cons(y2, n__from(x0))) → SEL(indx(activate(y0), y1), from(x0))
FROM(X) → ACTIVATE(X)
ACTIVATE(n__sel(n__dbl(y0), n__s(x0))) → SEL(dbl(activate(y0)), s(x0))
ACTIVATE(n__dbls(n__sel(x0, x1))) → DBLS(sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__dbl(y0), n__dbls(x0))) → SEL(dbl(activate(y0)), dbls(activate(x0)))
ACTIVATE(n__sel(n__dbls(y0), n__dbl(x0))) → SEL(dbls(activate(y0)), dbl(activate(x0)))
ACTIVATE(n__sel(n__dbl(y0), x0)) → SEL(dbl(activate(y0)), x0)
ACTIVATE(n__dbl(n__indx(x0, x1))) → DBL(indx(activate(x0), x1))
DBLS(cons(X, Y)) → ACTIVATE(X)
ACTIVATE(n__sel(n__dbls(y0), n__indx(x0, x1))) → SEL(dbls(activate(y0)), indx(activate(x0), x1))
ACTIVATE(n__sel(n__sel(y0, y1), n__sel(x0, x1))) → SEL(sel(activate(y0), activate(y1)), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(y0, n__sel(x0, x1))) → SEL(y0, sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__dbls(y0), n__s(x0))) → SEL(dbls(activate(y0)), s(x0))
ACTIVATE(n__sel(y0, n__dbl(x0))) → SEL(y0, dbl(activate(x0)))
ACTIVATE(n__dbls(n__dbl(x0))) → DBLS(dbl(activate(x0)))
ACTIVATE(n__dbls(n__indx(x0, x1))) → DBLS(indx(activate(x0), x1))
ACTIVATE(n__sel(n__sel(y0, y1), n__indx(x0, x1))) → SEL(sel(activate(y0), activate(y1)), indx(activate(x0), x1))
SEL(s(n__indx(y0, y1)), cons(y2, n__s(x0))) → SEL(indx(activate(y0), y1), s(x0))
ACTIVATE(n__sel(n__dbls(y0), x0)) → SEL(dbls(activate(y0)), x0)
ACTIVATE(n__sel(n__s(y0), n__sel(x0, x1))) → SEL(s(y0), sel(activate(x0), activate(x1)))
SEL(s(n__indx(y0, y1)), cons(y2, n__dbls(x0))) → SEL(indx(activate(y0), y1), dbls(activate(x0)))
ACTIVATE(n__indx(x0, y1)) → INDX(x0, y1)
SEL(s(n__indx(y0, y1)), cons(y2, n__dbl(x0))) → SEL(indx(activate(y0), y1), dbl(activate(x0)))
ACTIVATE(n__sel(n__dbl(y0), n__dbl(x0))) → SEL(dbl(activate(y0)), dbl(activate(x0)))
SEL(s(n__dbls(x0)), cons(y1, y2)) → SEL(dbls(activate(x0)), activate(y2))
ACTIVATE(n__sel(n__sel(y0, y1), n__dbls(x0))) → SEL(sel(activate(y0), activate(y1)), dbls(activate(x0)))
ACTIVATE(n__sel(n__dbls(y0), n__sel(x0, x1))) → SEL(dbls(activate(y0)), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__indx(y0, y1), n__dbls(x0))) → SEL(indx(activate(y0), y1), dbls(activate(x0)))
ACTIVATE(n__sel(n__dbl(y0), n__from(x0))) → SEL(dbl(activate(y0)), from(x0))
ACTIVATE(n__indx(n__dbls(x0), y1)) → INDX(dbls(activate(x0)), y1)
SEL(s(x0), cons(y1, y2)) → SEL(x0, activate(y2))
The TRS R consists of the following rules:
dbl(0) → 0
dbl(s(X)) → s(n__s(n__dbl(activate(X))))
dbls(nil) → nil
dbls(cons(X, Y)) → cons(n__dbl(activate(X)), n__dbls(activate(Y)))
sel(0, cons(X, Y)) → activate(X)
sel(s(X), cons(Y, Z)) → sel(activate(X), activate(Z))
indx(nil, X) → nil
indx(cons(X, Y), Z) → cons(n__sel(activate(X), activate(Z)), n__indx(activate(Y), activate(Z)))
from(X) → cons(activate(X), n__from(n__s(activate(X))))
s(X) → n__s(X)
dbl(X) → n__dbl(X)
dbls(X) → n__dbls(X)
sel(X1, X2) → n__sel(X1, X2)
indx(X1, X2) → n__indx(X1, X2)
from(X) → n__from(X)
activate(n__s(X)) → s(X)
activate(n__dbl(X)) → dbl(activate(X))
activate(n__dbls(X)) → dbls(activate(X))
activate(n__sel(X1, X2)) → sel(activate(X1), activate(X2))
activate(n__indx(X1, X2)) → indx(activate(X1), X2)
activate(n__from(X)) → from(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule SEL(s(n__from(x0)), cons(y1, y2)) → SEL(from(x0), activate(y2)) at position [0] we obtained the following new rules:
SEL(s(n__from(x0)), cons(y1, y2)) → SEL(cons(activate(x0), n__from(n__s(activate(x0)))), activate(y2))
SEL(s(n__from(x0)), cons(y1, y2)) → SEL(n__from(x0), activate(y2))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE(n__sel(n__s(y0), n__indx(x0, x1))) → SEL(s(y0), indx(activate(x0), x1))
ACTIVATE(n__sel(n__s(y0), n__dbl(x0))) → SEL(s(y0), dbl(activate(x0)))
ACTIVATE(n__dbl(n__dbl(x0))) → DBL(dbl(activate(x0)))
SEL(s(X), cons(Y, Z)) → ACTIVATE(Z)
SEL(s(n__sel(y0, y1)), cons(y2, n__dbl(x0))) → SEL(sel(activate(y0), activate(y1)), dbl(activate(x0)))
ACTIVATE(n__dbl(X)) → ACTIVATE(X)
SEL(s(n__indx(y0, y1)), cons(y2, n__sel(x0, x1))) → SEL(indx(activate(y0), y1), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__s(y0), x0)) → SEL(s(y0), x0)
ACTIVATE(n__from(X)) → FROM(X)
SEL(s(n__sel(y0, y1)), cons(y2, n__sel(x0, x1))) → SEL(sel(activate(y0), activate(y1)), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__s(y0), n__s(x0))) → SEL(s(y0), s(x0))
ACTIVATE(n__dbls(x0)) → DBLS(x0)
ACTIVATE(n__sel(n__indx(y0, y1), n__indx(x0, x1))) → SEL(indx(activate(y0), y1), indx(activate(x0), x1))
SEL(s(n__sel(y0, y1)), cons(y2, n__dbls(x0))) → SEL(sel(activate(y0), activate(y1)), dbls(activate(x0)))
ACTIVATE(n__dbl(n__dbls(x0))) → DBL(dbls(activate(x0)))
INDX(cons(X, Y), Z) → ACTIVATE(X)
ACTIVATE(n__dbl(x0)) → DBL(x0)
SEL(s(n__s(y0)), cons(y1, n__sel(x0, x1))) → SEL(s(y0), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__sel(y0, y1), n__dbl(x0))) → SEL(sel(activate(y0), activate(y1)), dbl(activate(x0)))
ACTIVATE(n__sel(n__dbl(y0), n__sel(x0, x1))) → SEL(dbl(activate(y0)), sel(activate(x0), activate(x1)))
SEL(s(n__s(y0)), cons(y1, n__dbl(x0))) → SEL(s(y0), dbl(activate(x0)))
ACTIVATE(n__dbls(n__from(x0))) → DBLS(from(x0))
ACTIVATE(n__sel(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__sel(n__s(y0), n__from(x0))) → SEL(s(y0), from(x0))
SEL(s(n__s(y0)), cons(y1, n__indx(x0, x1))) → SEL(s(y0), indx(activate(x0), x1))
SEL(s(n__sel(y0, y1)), cons(y2, n__from(x0))) → SEL(sel(activate(y0), activate(y1)), from(x0))
SEL(s(X), cons(Y, Z)) → ACTIVATE(X)
ACTIVATE(n__sel(n__indx(y0, y1), n__s(x0))) → SEL(indx(activate(y0), y1), s(x0))
DBL(s(X)) → ACTIVATE(X)
SEL(s(n__dbl(y0)), cons(y1, x0)) → SEL(dbl(activate(y0)), x0)
ACTIVATE(n__sel(n__indx(y0, y1), n__sel(x0, x1))) → SEL(indx(activate(y0), y1), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(y0, n__from(x0))) → SEL(y0, from(x0))
SEL(s(n__from(x0)), cons(y1, y2)) → SEL(n__from(x0), activate(y2))
ACTIVATE(n__sel(y0, x0)) → SEL(y0, x0)
SEL(s(n__sel(y0, y1)), cons(y2, n__s(x0))) → SEL(sel(activate(y0), activate(y1)), s(x0))
ACTIVATE(n__dbls(n__dbls(x0))) → DBLS(dbls(activate(x0)))
SEL(s(n__dbl(y0)), cons(y1, n__indx(x0, x1))) → SEL(dbl(activate(y0)), indx(activate(x0), x1))
ACTIVATE(n__sel(n__indx(y0, y1), x0)) → SEL(indx(activate(y0), y1), x0)
ACTIVATE(n__dbl(n__s(x0))) → DBL(s(x0))
ACTIVATE(n__sel(y0, n__indx(x0, x1))) → SEL(y0, indx(activate(x0), x1))
SEL(s(n__dbl(y0)), cons(y1, n__dbl(x0))) → SEL(dbl(activate(y0)), dbl(activate(x0)))
ACTIVATE(n__sel(n__indx(y0, y1), n__from(x0))) → SEL(indx(activate(y0), y1), from(x0))
ACTIVATE(n__sel(n__dbls(y0), n__from(x0))) → SEL(dbls(activate(y0)), from(x0))
SEL(s(n__sel(y0, y1)), cons(y2, n__indx(x0, x1))) → SEL(sel(activate(y0), activate(y1)), indx(activate(x0), x1))
ACTIVATE(n__dbl(n__sel(x0, x1))) → DBL(sel(activate(x0), activate(x1)))
SEL(s(n__s(y0)), cons(y1, n__dbls(x0))) → SEL(s(y0), dbls(activate(x0)))
ACTIVATE(n__indx(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__indx(n__from(x0), y1)) → INDX(from(x0), y1)
SEL(s(n__indx(y0, y1)), cons(y2, x0)) → SEL(indx(activate(y0), y1), x0)
ACTIVATE(n__indx(n__dbl(x0), y1)) → INDX(dbl(activate(x0)), y1)
SEL(s(n__s(y0)), cons(y1, x0)) → SEL(s(y0), x0)
INDX(cons(X, Y), Z) → ACTIVATE(Y)
ACTIVATE(n__sel(n__dbl(y0), n__indx(x0, x1))) → SEL(dbl(activate(y0)), indx(activate(x0), x1))
ACTIVATE(n__indx(n__indx(x0, x1), y1)) → INDX(indx(activate(x0), x1), y1)
ACTIVATE(n__sel(n__s(y0), n__dbls(x0))) → SEL(s(y0), dbls(activate(x0)))
SEL(s(n__dbl(y0)), cons(y1, n__s(x0))) → SEL(dbl(activate(y0)), s(x0))
ACTIVATE(n__indx(n__sel(x0, x1), y1)) → INDX(sel(activate(x0), activate(x1)), y1)
INDX(cons(X, Y), Z) → ACTIVATE(Z)
SEL(s(n__s(y0)), cons(y1, n__s(x0))) → SEL(s(y0), s(x0))
ACTIVATE(n__sel(n__indx(y0, y1), n__dbl(x0))) → SEL(indx(activate(y0), y1), dbl(activate(x0)))
ACTIVATE(n__dbls(X)) → ACTIVATE(X)
SEL(0, cons(X, Y)) → ACTIVATE(X)
ACTIVATE(n__sel(n__dbls(y0), n__dbls(x0))) → SEL(dbls(activate(y0)), dbls(activate(x0)))
ACTIVATE(n__sel(y0, n__dbls(x0))) → SEL(y0, dbls(activate(x0)))
DBLS(cons(X, Y)) → ACTIVATE(Y)
ACTIVATE(n__sel(n__sel(y0, y1), n__s(x0))) → SEL(sel(activate(y0), activate(y1)), s(x0))
SEL(s(n__dbl(y0)), cons(y1, n__dbls(x0))) → SEL(dbl(activate(y0)), dbls(activate(x0)))
ACTIVATE(n__sel(y0, n__s(x0))) → SEL(y0, s(x0))
SEL(s(n__dbl(y0)), cons(y1, n__from(x0))) → SEL(dbl(activate(y0)), from(x0))
SEL(s(n__sel(y0, y1)), cons(y2, x0)) → SEL(sel(activate(y0), activate(y1)), x0)
SEL(s(n__s(y0)), cons(y1, n__from(x0))) → SEL(s(y0), from(x0))
ACTIVATE(n__sel(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__sel(n__sel(y0, y1), n__from(x0))) → SEL(sel(activate(y0), activate(y1)), from(x0))
SEL(s(n__dbl(y0)), cons(y1, n__sel(x0, x1))) → SEL(dbl(activate(y0)), sel(activate(x0), activate(x1)))
SEL(s(n__indx(y0, y1)), cons(y2, n__indx(x0, x1))) → SEL(indx(activate(y0), y1), indx(activate(x0), x1))
SEL(s(n__indx(y0, y1)), cons(y2, n__from(x0))) → SEL(indx(activate(y0), y1), from(x0))
ACTIVATE(n__sel(n__sel(y0, y1), x0)) → SEL(sel(activate(y0), activate(y1)), x0)
FROM(X) → ACTIVATE(X)
ACTIVATE(n__dbls(n__sel(x0, x1))) → DBLS(sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__dbl(y0), n__s(x0))) → SEL(dbl(activate(y0)), s(x0))
ACTIVATE(n__sel(n__dbls(y0), n__dbl(x0))) → SEL(dbls(activate(y0)), dbl(activate(x0)))
ACTIVATE(n__sel(n__dbl(y0), n__dbls(x0))) → SEL(dbl(activate(y0)), dbls(activate(x0)))
ACTIVATE(n__sel(n__dbl(y0), x0)) → SEL(dbl(activate(y0)), x0)
ACTIVATE(n__dbl(n__indx(x0, x1))) → DBL(indx(activate(x0), x1))
DBLS(cons(X, Y)) → ACTIVATE(X)
ACTIVATE(n__sel(n__dbls(y0), n__indx(x0, x1))) → SEL(dbls(activate(y0)), indx(activate(x0), x1))
ACTIVATE(n__sel(n__sel(y0, y1), n__sel(x0, x1))) → SEL(sel(activate(y0), activate(y1)), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(y0, n__sel(x0, x1))) → SEL(y0, sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__dbls(y0), n__s(x0))) → SEL(dbls(activate(y0)), s(x0))
ACTIVATE(n__sel(y0, n__dbl(x0))) → SEL(y0, dbl(activate(x0)))
ACTIVATE(n__dbls(n__dbl(x0))) → DBLS(dbl(activate(x0)))
ACTIVATE(n__dbls(n__indx(x0, x1))) → DBLS(indx(activate(x0), x1))
ACTIVATE(n__sel(n__sel(y0, y1), n__indx(x0, x1))) → SEL(sel(activate(y0), activate(y1)), indx(activate(x0), x1))
SEL(s(n__indx(y0, y1)), cons(y2, n__s(x0))) → SEL(indx(activate(y0), y1), s(x0))
ACTIVATE(n__sel(n__dbls(y0), x0)) → SEL(dbls(activate(y0)), x0)
ACTIVATE(n__sel(n__s(y0), n__sel(x0, x1))) → SEL(s(y0), sel(activate(x0), activate(x1)))
SEL(s(n__indx(y0, y1)), cons(y2, n__dbls(x0))) → SEL(indx(activate(y0), y1), dbls(activate(x0)))
ACTIVATE(n__indx(x0, y1)) → INDX(x0, y1)
SEL(s(n__from(x0)), cons(y1, y2)) → SEL(cons(activate(x0), n__from(n__s(activate(x0)))), activate(y2))
SEL(s(n__indx(y0, y1)), cons(y2, n__dbl(x0))) → SEL(indx(activate(y0), y1), dbl(activate(x0)))
ACTIVATE(n__sel(n__dbl(y0), n__dbl(x0))) → SEL(dbl(activate(y0)), dbl(activate(x0)))
SEL(s(n__dbls(x0)), cons(y1, y2)) → SEL(dbls(activate(x0)), activate(y2))
ACTIVATE(n__sel(n__dbls(y0), n__sel(x0, x1))) → SEL(dbls(activate(y0)), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__sel(y0, y1), n__dbls(x0))) → SEL(sel(activate(y0), activate(y1)), dbls(activate(x0)))
ACTIVATE(n__sel(n__indx(y0, y1), n__dbls(x0))) → SEL(indx(activate(y0), y1), dbls(activate(x0)))
ACTIVATE(n__sel(n__dbl(y0), n__from(x0))) → SEL(dbl(activate(y0)), from(x0))
ACTIVATE(n__indx(n__dbls(x0), y1)) → INDX(dbls(activate(x0)), y1)
SEL(s(x0), cons(y1, y2)) → SEL(x0, activate(y2))
The TRS R consists of the following rules:
dbl(0) → 0
dbl(s(X)) → s(n__s(n__dbl(activate(X))))
dbls(nil) → nil
dbls(cons(X, Y)) → cons(n__dbl(activate(X)), n__dbls(activate(Y)))
sel(0, cons(X, Y)) → activate(X)
sel(s(X), cons(Y, Z)) → sel(activate(X), activate(Z))
indx(nil, X) → nil
indx(cons(X, Y), Z) → cons(n__sel(activate(X), activate(Z)), n__indx(activate(Y), activate(Z)))
from(X) → cons(activate(X), n__from(n__s(activate(X))))
s(X) → n__s(X)
dbl(X) → n__dbl(X)
dbls(X) → n__dbls(X)
sel(X1, X2) → n__sel(X1, X2)
indx(X1, X2) → n__indx(X1, X2)
from(X) → n__from(X)
activate(n__s(X)) → s(X)
activate(n__dbl(X)) → dbl(activate(X))
activate(n__dbls(X)) → dbls(activate(X))
activate(n__sel(X1, X2)) → sel(activate(X1), activate(X2))
activate(n__indx(X1, X2)) → indx(activate(X1), X2)
activate(n__from(X)) → from(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 2 less nodes.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
Q DP problem:
The TRS P consists of the following rules:
SEL(s(X), cons(Y, Z)) → ACTIVATE(Z)
ACTIVATE(n__dbl(n__dbl(x0))) → DBL(dbl(activate(x0)))
ACTIVATE(n__sel(n__s(y0), n__dbl(x0))) → SEL(s(y0), dbl(activate(x0)))
ACTIVATE(n__sel(n__s(y0), n__indx(x0, x1))) → SEL(s(y0), indx(activate(x0), x1))
SEL(s(n__sel(y0, y1)), cons(y2, n__dbl(x0))) → SEL(sel(activate(y0), activate(y1)), dbl(activate(x0)))
ACTIVATE(n__dbl(X)) → ACTIVATE(X)
SEL(s(n__indx(y0, y1)), cons(y2, n__sel(x0, x1))) → SEL(indx(activate(y0), y1), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__s(y0), x0)) → SEL(s(y0), x0)
ACTIVATE(n__from(X)) → FROM(X)
SEL(s(n__sel(y0, y1)), cons(y2, n__sel(x0, x1))) → SEL(sel(activate(y0), activate(y1)), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__s(y0), n__s(x0))) → SEL(s(y0), s(x0))
ACTIVATE(n__dbls(x0)) → DBLS(x0)
SEL(s(n__sel(y0, y1)), cons(y2, n__dbls(x0))) → SEL(sel(activate(y0), activate(y1)), dbls(activate(x0)))
ACTIVATE(n__sel(n__indx(y0, y1), n__indx(x0, x1))) → SEL(indx(activate(y0), y1), indx(activate(x0), x1))
ACTIVATE(n__dbl(n__dbls(x0))) → DBL(dbls(activate(x0)))
INDX(cons(X, Y), Z) → ACTIVATE(X)
ACTIVATE(n__dbl(x0)) → DBL(x0)
SEL(s(n__s(y0)), cons(y1, n__sel(x0, x1))) → SEL(s(y0), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__dbl(y0), n__sel(x0, x1))) → SEL(dbl(activate(y0)), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__sel(y0, y1), n__dbl(x0))) → SEL(sel(activate(y0), activate(y1)), dbl(activate(x0)))
ACTIVATE(n__sel(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__dbls(n__from(x0))) → DBLS(from(x0))
SEL(s(n__s(y0)), cons(y1, n__dbl(x0))) → SEL(s(y0), dbl(activate(x0)))
ACTIVATE(n__sel(n__s(y0), n__from(x0))) → SEL(s(y0), from(x0))
SEL(s(n__s(y0)), cons(y1, n__indx(x0, x1))) → SEL(s(y0), indx(activate(x0), x1))
SEL(s(n__sel(y0, y1)), cons(y2, n__from(x0))) → SEL(sel(activate(y0), activate(y1)), from(x0))
SEL(s(X), cons(Y, Z)) → ACTIVATE(X)
SEL(s(n__dbl(y0)), cons(y1, x0)) → SEL(dbl(activate(y0)), x0)
DBL(s(X)) → ACTIVATE(X)
ACTIVATE(n__sel(n__indx(y0, y1), n__s(x0))) → SEL(indx(activate(y0), y1), s(x0))
ACTIVATE(n__sel(n__indx(y0, y1), n__sel(x0, x1))) → SEL(indx(activate(y0), y1), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(y0, n__from(x0))) → SEL(y0, from(x0))
ACTIVATE(n__sel(y0, x0)) → SEL(y0, x0)
SEL(s(n__sel(y0, y1)), cons(y2, n__s(x0))) → SEL(sel(activate(y0), activate(y1)), s(x0))
SEL(s(n__dbl(y0)), cons(y1, n__indx(x0, x1))) → SEL(dbl(activate(y0)), indx(activate(x0), x1))
ACTIVATE(n__dbls(n__dbls(x0))) → DBLS(dbls(activate(x0)))
ACTIVATE(n__sel(n__indx(y0, y1), x0)) → SEL(indx(activate(y0), y1), x0)
ACTIVATE(n__dbl(n__s(x0))) → DBL(s(x0))
SEL(s(n__dbl(y0)), cons(y1, n__dbl(x0))) → SEL(dbl(activate(y0)), dbl(activate(x0)))
ACTIVATE(n__sel(y0, n__indx(x0, x1))) → SEL(y0, indx(activate(x0), x1))
ACTIVATE(n__sel(n__indx(y0, y1), n__from(x0))) → SEL(indx(activate(y0), y1), from(x0))
ACTIVATE(n__sel(n__dbls(y0), n__from(x0))) → SEL(dbls(activate(y0)), from(x0))
SEL(s(n__sel(y0, y1)), cons(y2, n__indx(x0, x1))) → SEL(sel(activate(y0), activate(y1)), indx(activate(x0), x1))
ACTIVATE(n__dbl(n__sel(x0, x1))) → DBL(sel(activate(x0), activate(x1)))
SEL(s(n__s(y0)), cons(y1, n__dbls(x0))) → SEL(s(y0), dbls(activate(x0)))
ACTIVATE(n__indx(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__indx(n__from(x0), y1)) → INDX(from(x0), y1)
SEL(s(n__indx(y0, y1)), cons(y2, x0)) → SEL(indx(activate(y0), y1), x0)
ACTIVATE(n__indx(n__dbl(x0), y1)) → INDX(dbl(activate(x0)), y1)
SEL(s(n__s(y0)), cons(y1, x0)) → SEL(s(y0), x0)
INDX(cons(X, Y), Z) → ACTIVATE(Y)
ACTIVATE(n__sel(n__dbl(y0), n__indx(x0, x1))) → SEL(dbl(activate(y0)), indx(activate(x0), x1))
ACTIVATE(n__indx(n__indx(x0, x1), y1)) → INDX(indx(activate(x0), x1), y1)
ACTIVATE(n__sel(n__s(y0), n__dbls(x0))) → SEL(s(y0), dbls(activate(x0)))
SEL(s(n__dbl(y0)), cons(y1, n__s(x0))) → SEL(dbl(activate(y0)), s(x0))
ACTIVATE(n__indx(n__sel(x0, x1), y1)) → INDX(sel(activate(x0), activate(x1)), y1)
INDX(cons(X, Y), Z) → ACTIVATE(Z)
SEL(s(n__s(y0)), cons(y1, n__s(x0))) → SEL(s(y0), s(x0))
ACTIVATE(n__sel(n__indx(y0, y1), n__dbl(x0))) → SEL(indx(activate(y0), y1), dbl(activate(x0)))
ACTIVATE(n__dbls(X)) → ACTIVATE(X)
SEL(0, cons(X, Y)) → ACTIVATE(X)
ACTIVATE(n__sel(n__dbls(y0), n__dbls(x0))) → SEL(dbls(activate(y0)), dbls(activate(x0)))
ACTIVATE(n__sel(y0, n__dbls(x0))) → SEL(y0, dbls(activate(x0)))
DBLS(cons(X, Y)) → ACTIVATE(Y)
SEL(s(n__dbl(y0)), cons(y1, n__dbls(x0))) → SEL(dbl(activate(y0)), dbls(activate(x0)))
ACTIVATE(n__sel(n__sel(y0, y1), n__s(x0))) → SEL(sel(activate(y0), activate(y1)), s(x0))
ACTIVATE(n__sel(y0, n__s(x0))) → SEL(y0, s(x0))
SEL(s(n__dbl(y0)), cons(y1, n__from(x0))) → SEL(dbl(activate(y0)), from(x0))
SEL(s(n__sel(y0, y1)), cons(y2, x0)) → SEL(sel(activate(y0), activate(y1)), x0)
SEL(s(n__s(y0)), cons(y1, n__from(x0))) → SEL(s(y0), from(x0))
ACTIVATE(n__sel(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__sel(n__sel(y0, y1), n__from(x0))) → SEL(sel(activate(y0), activate(y1)), from(x0))
SEL(s(n__dbl(y0)), cons(y1, n__sel(x0, x1))) → SEL(dbl(activate(y0)), sel(activate(x0), activate(x1)))
SEL(s(n__indx(y0, y1)), cons(y2, n__indx(x0, x1))) → SEL(indx(activate(y0), y1), indx(activate(x0), x1))
SEL(s(n__indx(y0, y1)), cons(y2, n__from(x0))) → SEL(indx(activate(y0), y1), from(x0))
ACTIVATE(n__sel(n__sel(y0, y1), x0)) → SEL(sel(activate(y0), activate(y1)), x0)
FROM(X) → ACTIVATE(X)
ACTIVATE(n__dbls(n__sel(x0, x1))) → DBLS(sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__dbl(y0), n__s(x0))) → SEL(dbl(activate(y0)), s(x0))
ACTIVATE(n__sel(n__dbls(y0), n__dbl(x0))) → SEL(dbls(activate(y0)), dbl(activate(x0)))
ACTIVATE(n__sel(n__dbl(y0), n__dbls(x0))) → SEL(dbl(activate(y0)), dbls(activate(x0)))
ACTIVATE(n__sel(n__dbl(y0), x0)) → SEL(dbl(activate(y0)), x0)
ACTIVATE(n__dbl(n__indx(x0, x1))) → DBL(indx(activate(x0), x1))
DBLS(cons(X, Y)) → ACTIVATE(X)
ACTIVATE(n__sel(n__dbls(y0), n__indx(x0, x1))) → SEL(dbls(activate(y0)), indx(activate(x0), x1))
ACTIVATE(n__sel(n__sel(y0, y1), n__sel(x0, x1))) → SEL(sel(activate(y0), activate(y1)), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(y0, n__sel(x0, x1))) → SEL(y0, sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__dbls(y0), n__s(x0))) → SEL(dbls(activate(y0)), s(x0))
ACTIVATE(n__sel(y0, n__dbl(x0))) → SEL(y0, dbl(activate(x0)))
ACTIVATE(n__dbls(n__dbl(x0))) → DBLS(dbl(activate(x0)))
ACTIVATE(n__dbls(n__indx(x0, x1))) → DBLS(indx(activate(x0), x1))
ACTIVATE(n__sel(n__sel(y0, y1), n__indx(x0, x1))) → SEL(sel(activate(y0), activate(y1)), indx(activate(x0), x1))
SEL(s(n__indx(y0, y1)), cons(y2, n__s(x0))) → SEL(indx(activate(y0), y1), s(x0))
ACTIVATE(n__sel(n__dbls(y0), x0)) → SEL(dbls(activate(y0)), x0)
ACTIVATE(n__sel(n__s(y0), n__sel(x0, x1))) → SEL(s(y0), sel(activate(x0), activate(x1)))
SEL(s(n__indx(y0, y1)), cons(y2, n__dbls(x0))) → SEL(indx(activate(y0), y1), dbls(activate(x0)))
ACTIVATE(n__indx(x0, y1)) → INDX(x0, y1)
SEL(s(n__indx(y0, y1)), cons(y2, n__dbl(x0))) → SEL(indx(activate(y0), y1), dbl(activate(x0)))
ACTIVATE(n__sel(n__dbl(y0), n__dbl(x0))) → SEL(dbl(activate(y0)), dbl(activate(x0)))
SEL(s(n__dbls(x0)), cons(y1, y2)) → SEL(dbls(activate(x0)), activate(y2))
ACTIVATE(n__sel(n__dbls(y0), n__sel(x0, x1))) → SEL(dbls(activate(y0)), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__sel(y0, y1), n__dbls(x0))) → SEL(sel(activate(y0), activate(y1)), dbls(activate(x0)))
ACTIVATE(n__sel(n__indx(y0, y1), n__dbls(x0))) → SEL(indx(activate(y0), y1), dbls(activate(x0)))
ACTIVATE(n__sel(n__dbl(y0), n__from(x0))) → SEL(dbl(activate(y0)), from(x0))
ACTIVATE(n__indx(n__dbls(x0), y1)) → INDX(dbls(activate(x0)), y1)
SEL(s(x0), cons(y1, y2)) → SEL(x0, activate(y2))
The TRS R consists of the following rules:
dbl(0) → 0
dbl(s(X)) → s(n__s(n__dbl(activate(X))))
dbls(nil) → nil
dbls(cons(X, Y)) → cons(n__dbl(activate(X)), n__dbls(activate(Y)))
sel(0, cons(X, Y)) → activate(X)
sel(s(X), cons(Y, Z)) → sel(activate(X), activate(Z))
indx(nil, X) → nil
indx(cons(X, Y), Z) → cons(n__sel(activate(X), activate(Z)), n__indx(activate(Y), activate(Z)))
from(X) → cons(activate(X), n__from(n__s(activate(X))))
s(X) → n__s(X)
dbl(X) → n__dbl(X)
dbls(X) → n__dbls(X)
sel(X1, X2) → n__sel(X1, X2)
indx(X1, X2) → n__indx(X1, X2)
from(X) → n__from(X)
activate(n__s(X)) → s(X)
activate(n__dbl(X)) → dbl(activate(X))
activate(n__dbls(X)) → dbls(activate(X))
activate(n__sel(X1, X2)) → sel(activate(X1), activate(X2))
activate(n__indx(X1, X2)) → indx(activate(X1), X2)
activate(n__from(X)) → from(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule SEL(s(x0), cons(y1, y2)) → SEL(x0, activate(y2)) at position [1] we obtained the following new rules:
SEL(s(y0), cons(y1, n__s(x0))) → SEL(y0, s(x0))
SEL(s(y0), cons(y1, n__dbl(x0))) → SEL(y0, dbl(activate(x0)))
SEL(s(y0), cons(y1, n__sel(x0, x1))) → SEL(y0, sel(activate(x0), activate(x1)))
SEL(s(y0), cons(y1, n__dbls(x0))) → SEL(y0, dbls(activate(x0)))
SEL(s(y0), cons(y1, x0)) → SEL(y0, x0)
SEL(s(y0), cons(y1, n__from(x0))) → SEL(y0, from(x0))
SEL(s(y0), cons(y1, n__indx(x0, x1))) → SEL(y0, indx(activate(x0), x1))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE(n__sel(n__s(y0), n__indx(x0, x1))) → SEL(s(y0), indx(activate(x0), x1))
ACTIVATE(n__sel(n__s(y0), n__dbl(x0))) → SEL(s(y0), dbl(activate(x0)))
ACTIVATE(n__dbl(n__dbl(x0))) → DBL(dbl(activate(x0)))
SEL(s(X), cons(Y, Z)) → ACTIVATE(Z)
SEL(s(n__sel(y0, y1)), cons(y2, n__dbl(x0))) → SEL(sel(activate(y0), activate(y1)), dbl(activate(x0)))
ACTIVATE(n__dbl(X)) → ACTIVATE(X)
SEL(s(n__indx(y0, y1)), cons(y2, n__sel(x0, x1))) → SEL(indx(activate(y0), y1), sel(activate(x0), activate(x1)))
SEL(s(y0), cons(y1, n__from(x0))) → SEL(y0, from(x0))
ACTIVATE(n__sel(n__s(y0), x0)) → SEL(s(y0), x0)
ACTIVATE(n__from(X)) → FROM(X)
SEL(s(n__sel(y0, y1)), cons(y2, n__sel(x0, x1))) → SEL(sel(activate(y0), activate(y1)), sel(activate(x0), activate(x1)))
SEL(s(y0), cons(y1, n__indx(x0, x1))) → SEL(y0, indx(activate(x0), x1))
ACTIVATE(n__dbls(x0)) → DBLS(x0)
ACTIVATE(n__sel(n__s(y0), n__s(x0))) → SEL(s(y0), s(x0))
ACTIVATE(n__sel(n__indx(y0, y1), n__indx(x0, x1))) → SEL(indx(activate(y0), y1), indx(activate(x0), x1))
SEL(s(n__sel(y0, y1)), cons(y2, n__dbls(x0))) → SEL(sel(activate(y0), activate(y1)), dbls(activate(x0)))
SEL(s(y0), cons(y1, n__s(x0))) → SEL(y0, s(x0))
ACTIVATE(n__dbl(n__dbls(x0))) → DBL(dbls(activate(x0)))
INDX(cons(X, Y), Z) → ACTIVATE(X)
ACTIVATE(n__dbl(x0)) → DBL(x0)
SEL(s(n__s(y0)), cons(y1, n__sel(x0, x1))) → SEL(s(y0), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__sel(y0, y1), n__dbl(x0))) → SEL(sel(activate(y0), activate(y1)), dbl(activate(x0)))
ACTIVATE(n__sel(n__dbl(y0), n__sel(x0, x1))) → SEL(dbl(activate(y0)), sel(activate(x0), activate(x1)))
SEL(s(n__s(y0)), cons(y1, n__dbl(x0))) → SEL(s(y0), dbl(activate(x0)))
ACTIVATE(n__dbls(n__from(x0))) → DBLS(from(x0))
ACTIVATE(n__sel(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__sel(n__s(y0), n__from(x0))) → SEL(s(y0), from(x0))
SEL(s(n__s(y0)), cons(y1, n__indx(x0, x1))) → SEL(s(y0), indx(activate(x0), x1))
SEL(s(n__sel(y0, y1)), cons(y2, n__from(x0))) → SEL(sel(activate(y0), activate(y1)), from(x0))
SEL(s(X), cons(Y, Z)) → ACTIVATE(X)
ACTIVATE(n__sel(n__indx(y0, y1), n__s(x0))) → SEL(indx(activate(y0), y1), s(x0))
DBL(s(X)) → ACTIVATE(X)
SEL(s(n__dbl(y0)), cons(y1, x0)) → SEL(dbl(activate(y0)), x0)
ACTIVATE(n__sel(n__indx(y0, y1), n__sel(x0, x1))) → SEL(indx(activate(y0), y1), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(y0, n__from(x0))) → SEL(y0, from(x0))
ACTIVATE(n__sel(y0, x0)) → SEL(y0, x0)
SEL(s(n__sel(y0, y1)), cons(y2, n__s(x0))) → SEL(sel(activate(y0), activate(y1)), s(x0))
ACTIVATE(n__dbls(n__dbls(x0))) → DBLS(dbls(activate(x0)))
SEL(s(n__dbl(y0)), cons(y1, n__indx(x0, x1))) → SEL(dbl(activate(y0)), indx(activate(x0), x1))
ACTIVATE(n__sel(n__indx(y0, y1), x0)) → SEL(indx(activate(y0), y1), x0)
ACTIVATE(n__dbl(n__s(x0))) → DBL(s(x0))
ACTIVATE(n__sel(y0, n__indx(x0, x1))) → SEL(y0, indx(activate(x0), x1))
SEL(s(n__dbl(y0)), cons(y1, n__dbl(x0))) → SEL(dbl(activate(y0)), dbl(activate(x0)))
ACTIVATE(n__sel(n__indx(y0, y1), n__from(x0))) → SEL(indx(activate(y0), y1), from(x0))
SEL(s(y0), cons(y1, n__dbls(x0))) → SEL(y0, dbls(activate(x0)))
SEL(s(n__sel(y0, y1)), cons(y2, n__indx(x0, x1))) → SEL(sel(activate(y0), activate(y1)), indx(activate(x0), x1))
ACTIVATE(n__sel(n__dbls(y0), n__from(x0))) → SEL(dbls(activate(y0)), from(x0))
ACTIVATE(n__dbl(n__sel(x0, x1))) → DBL(sel(activate(x0), activate(x1)))
SEL(s(n__s(y0)), cons(y1, n__dbls(x0))) → SEL(s(y0), dbls(activate(x0)))
ACTIVATE(n__indx(X1, X2)) → ACTIVATE(X1)
SEL(s(n__indx(y0, y1)), cons(y2, x0)) → SEL(indx(activate(y0), y1), x0)
ACTIVATE(n__indx(n__from(x0), y1)) → INDX(from(x0), y1)
ACTIVATE(n__indx(n__dbl(x0), y1)) → INDX(dbl(activate(x0)), y1)
SEL(s(n__s(y0)), cons(y1, x0)) → SEL(s(y0), x0)
INDX(cons(X, Y), Z) → ACTIVATE(Y)
ACTIVATE(n__sel(n__dbl(y0), n__indx(x0, x1))) → SEL(dbl(activate(y0)), indx(activate(x0), x1))
ACTIVATE(n__indx(n__indx(x0, x1), y1)) → INDX(indx(activate(x0), x1), y1)
ACTIVATE(n__sel(n__s(y0), n__dbls(x0))) → SEL(s(y0), dbls(activate(x0)))
SEL(s(n__dbl(y0)), cons(y1, n__s(x0))) → SEL(dbl(activate(y0)), s(x0))
ACTIVATE(n__indx(n__sel(x0, x1), y1)) → INDX(sel(activate(x0), activate(x1)), y1)
INDX(cons(X, Y), Z) → ACTIVATE(Z)
SEL(s(n__s(y0)), cons(y1, n__s(x0))) → SEL(s(y0), s(x0))
ACTIVATE(n__sel(n__indx(y0, y1), n__dbl(x0))) → SEL(indx(activate(y0), y1), dbl(activate(x0)))
ACTIVATE(n__dbls(X)) → ACTIVATE(X)
SEL(0, cons(X, Y)) → ACTIVATE(X)
ACTIVATE(n__sel(n__dbls(y0), n__dbls(x0))) → SEL(dbls(activate(y0)), dbls(activate(x0)))
ACTIVATE(n__sel(y0, n__dbls(x0))) → SEL(y0, dbls(activate(x0)))
DBLS(cons(X, Y)) → ACTIVATE(Y)
ACTIVATE(n__sel(n__sel(y0, y1), n__s(x0))) → SEL(sel(activate(y0), activate(y1)), s(x0))
SEL(s(n__dbl(y0)), cons(y1, n__dbls(x0))) → SEL(dbl(activate(y0)), dbls(activate(x0)))
ACTIVATE(n__sel(y0, n__s(x0))) → SEL(y0, s(x0))
SEL(s(y0), cons(y1, n__sel(x0, x1))) → SEL(y0, sel(activate(x0), activate(x1)))
SEL(s(n__dbl(y0)), cons(y1, n__from(x0))) → SEL(dbl(activate(y0)), from(x0))
SEL(s(n__sel(y0, y1)), cons(y2, x0)) → SEL(sel(activate(y0), activate(y1)), x0)
SEL(s(y0), cons(y1, n__dbl(x0))) → SEL(y0, dbl(activate(x0)))
ACTIVATE(n__sel(X1, X2)) → ACTIVATE(X2)
SEL(s(n__s(y0)), cons(y1, n__from(x0))) → SEL(s(y0), from(x0))
ACTIVATE(n__sel(n__sel(y0, y1), n__from(x0))) → SEL(sel(activate(y0), activate(y1)), from(x0))
SEL(s(n__dbl(y0)), cons(y1, n__sel(x0, x1))) → SEL(dbl(activate(y0)), sel(activate(x0), activate(x1)))
SEL(s(n__indx(y0, y1)), cons(y2, n__indx(x0, x1))) → SEL(indx(activate(y0), y1), indx(activate(x0), x1))
ACTIVATE(n__sel(n__sel(y0, y1), x0)) → SEL(sel(activate(y0), activate(y1)), x0)
SEL(s(n__indx(y0, y1)), cons(y2, n__from(x0))) → SEL(indx(activate(y0), y1), from(x0))
FROM(X) → ACTIVATE(X)
ACTIVATE(n__sel(n__dbl(y0), n__s(x0))) → SEL(dbl(activate(y0)), s(x0))
ACTIVATE(n__dbls(n__sel(x0, x1))) → DBLS(sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__dbl(y0), n__dbls(x0))) → SEL(dbl(activate(y0)), dbls(activate(x0)))
ACTIVATE(n__sel(n__dbls(y0), n__dbl(x0))) → SEL(dbls(activate(y0)), dbl(activate(x0)))
ACTIVATE(n__sel(n__dbl(y0), x0)) → SEL(dbl(activate(y0)), x0)
ACTIVATE(n__dbl(n__indx(x0, x1))) → DBL(indx(activate(x0), x1))
DBLS(cons(X, Y)) → ACTIVATE(X)
ACTIVATE(n__sel(n__dbls(y0), n__indx(x0, x1))) → SEL(dbls(activate(y0)), indx(activate(x0), x1))
ACTIVATE(n__sel(n__sel(y0, y1), n__sel(x0, x1))) → SEL(sel(activate(y0), activate(y1)), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(y0, n__sel(x0, x1))) → SEL(y0, sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__dbls(y0), n__s(x0))) → SEL(dbls(activate(y0)), s(x0))
ACTIVATE(n__sel(y0, n__dbl(x0))) → SEL(y0, dbl(activate(x0)))
ACTIVATE(n__dbls(n__dbl(x0))) → DBLS(dbl(activate(x0)))
ACTIVATE(n__dbls(n__indx(x0, x1))) → DBLS(indx(activate(x0), x1))
SEL(s(y0), cons(y1, x0)) → SEL(y0, x0)
ACTIVATE(n__sel(n__sel(y0, y1), n__indx(x0, x1))) → SEL(sel(activate(y0), activate(y1)), indx(activate(x0), x1))
SEL(s(n__indx(y0, y1)), cons(y2, n__s(x0))) → SEL(indx(activate(y0), y1), s(x0))
ACTIVATE(n__sel(n__dbls(y0), x0)) → SEL(dbls(activate(y0)), x0)
ACTIVATE(n__sel(n__s(y0), n__sel(x0, x1))) → SEL(s(y0), sel(activate(x0), activate(x1)))
SEL(s(n__indx(y0, y1)), cons(y2, n__dbls(x0))) → SEL(indx(activate(y0), y1), dbls(activate(x0)))
ACTIVATE(n__indx(x0, y1)) → INDX(x0, y1)
SEL(s(n__indx(y0, y1)), cons(y2, n__dbl(x0))) → SEL(indx(activate(y0), y1), dbl(activate(x0)))
ACTIVATE(n__sel(n__dbl(y0), n__dbl(x0))) → SEL(dbl(activate(y0)), dbl(activate(x0)))
SEL(s(n__dbls(x0)), cons(y1, y2)) → SEL(dbls(activate(x0)), activate(y2))
ACTIVATE(n__sel(n__sel(y0, y1), n__dbls(x0))) → SEL(sel(activate(y0), activate(y1)), dbls(activate(x0)))
ACTIVATE(n__sel(n__dbls(y0), n__sel(x0, x1))) → SEL(dbls(activate(y0)), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__indx(y0, y1), n__dbls(x0))) → SEL(indx(activate(y0), y1), dbls(activate(x0)))
ACTIVATE(n__sel(n__dbl(y0), n__from(x0))) → SEL(dbl(activate(y0)), from(x0))
ACTIVATE(n__indx(n__dbls(x0), y1)) → INDX(dbls(activate(x0)), y1)
The TRS R consists of the following rules:
dbl(0) → 0
dbl(s(X)) → s(n__s(n__dbl(activate(X))))
dbls(nil) → nil
dbls(cons(X, Y)) → cons(n__dbl(activate(X)), n__dbls(activate(Y)))
sel(0, cons(X, Y)) → activate(X)
sel(s(X), cons(Y, Z)) → sel(activate(X), activate(Z))
indx(nil, X) → nil
indx(cons(X, Y), Z) → cons(n__sel(activate(X), activate(Z)), n__indx(activate(Y), activate(Z)))
from(X) → cons(activate(X), n__from(n__s(activate(X))))
s(X) → n__s(X)
dbl(X) → n__dbl(X)
dbls(X) → n__dbls(X)
sel(X1, X2) → n__sel(X1, X2)
indx(X1, X2) → n__indx(X1, X2)
from(X) → n__from(X)
activate(n__s(X)) → s(X)
activate(n__dbl(X)) → dbl(activate(X))
activate(n__dbls(X)) → dbls(activate(X))
activate(n__sel(X1, X2)) → sel(activate(X1), activate(X2))
activate(n__indx(X1, X2)) → indx(activate(X1), X2)
activate(n__from(X)) → from(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule SEL(s(n__dbls(x0)), cons(y1, y2)) → SEL(dbls(activate(x0)), activate(y2)) at position [1] we obtained the following new rules:
SEL(s(n__dbls(y0)), cons(y1, n__dbl(x0))) → SEL(dbls(activate(y0)), dbl(activate(x0)))
SEL(s(n__dbls(y0)), cons(y1, x0)) → SEL(dbls(activate(y0)), x0)
SEL(s(n__dbls(y0)), cons(y1, n__s(x0))) → SEL(dbls(activate(y0)), s(x0))
SEL(s(n__dbls(y0)), cons(y1, n__from(x0))) → SEL(dbls(activate(y0)), from(x0))
SEL(s(n__dbls(y0)), cons(y1, n__sel(x0, x1))) → SEL(dbls(activate(y0)), sel(activate(x0), activate(x1)))
SEL(s(n__dbls(y0)), cons(y1, n__indx(x0, x1))) → SEL(dbls(activate(y0)), indx(activate(x0), x1))
SEL(s(n__dbls(y0)), cons(y1, n__dbls(x0))) → SEL(dbls(activate(y0)), dbls(activate(x0)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
Q DP problem:
The TRS P consists of the following rules:
SEL(s(X), cons(Y, Z)) → ACTIVATE(Z)
ACTIVATE(n__dbl(n__dbl(x0))) → DBL(dbl(activate(x0)))
ACTIVATE(n__sel(n__s(y0), n__dbl(x0))) → SEL(s(y0), dbl(activate(x0)))
ACTIVATE(n__sel(n__s(y0), n__indx(x0, x1))) → SEL(s(y0), indx(activate(x0), x1))
SEL(s(n__sel(y0, y1)), cons(y2, n__dbl(x0))) → SEL(sel(activate(y0), activate(y1)), dbl(activate(x0)))
ACTIVATE(n__dbl(X)) → ACTIVATE(X)
SEL(s(n__indx(y0, y1)), cons(y2, n__sel(x0, x1))) → SEL(indx(activate(y0), y1), sel(activate(x0), activate(x1)))
SEL(s(y0), cons(y1, n__from(x0))) → SEL(y0, from(x0))
ACTIVATE(n__sel(n__s(y0), x0)) → SEL(s(y0), x0)
ACTIVATE(n__from(X)) → FROM(X)
SEL(s(n__sel(y0, y1)), cons(y2, n__sel(x0, x1))) → SEL(sel(activate(y0), activate(y1)), sel(activate(x0), activate(x1)))
SEL(s(n__dbls(y0)), cons(y1, n__sel(x0, x1))) → SEL(dbls(activate(y0)), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__s(y0), n__s(x0))) → SEL(s(y0), s(x0))
ACTIVATE(n__dbls(x0)) → DBLS(x0)
SEL(s(y0), cons(y1, n__indx(x0, x1))) → SEL(y0, indx(activate(x0), x1))
SEL(s(n__sel(y0, y1)), cons(y2, n__dbls(x0))) → SEL(sel(activate(y0), activate(y1)), dbls(activate(x0)))
ACTIVATE(n__sel(n__indx(y0, y1), n__indx(x0, x1))) → SEL(indx(activate(y0), y1), indx(activate(x0), x1))
SEL(s(y0), cons(y1, n__s(x0))) → SEL(y0, s(x0))
ACTIVATE(n__dbl(n__dbls(x0))) → DBL(dbls(activate(x0)))
INDX(cons(X, Y), Z) → ACTIVATE(X)
ACTIVATE(n__dbl(x0)) → DBL(x0)
SEL(s(n__dbls(y0)), cons(y1, n__s(x0))) → SEL(dbls(activate(y0)), s(x0))
SEL(s(n__s(y0)), cons(y1, n__sel(x0, x1))) → SEL(s(y0), sel(activate(x0), activate(x1)))
SEL(s(n__dbls(y0)), cons(y1, n__from(x0))) → SEL(dbls(activate(y0)), from(x0))
ACTIVATE(n__sel(n__dbl(y0), n__sel(x0, x1))) → SEL(dbl(activate(y0)), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__sel(y0, y1), n__dbl(x0))) → SEL(sel(activate(y0), activate(y1)), dbl(activate(x0)))
ACTIVATE(n__sel(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__dbls(n__from(x0))) → DBLS(from(x0))
SEL(s(n__s(y0)), cons(y1, n__dbl(x0))) → SEL(s(y0), dbl(activate(x0)))
ACTIVATE(n__sel(n__s(y0), n__from(x0))) → SEL(s(y0), from(x0))
SEL(s(n__s(y0)), cons(y1, n__indx(x0, x1))) → SEL(s(y0), indx(activate(x0), x1))
SEL(s(n__sel(y0, y1)), cons(y2, n__from(x0))) → SEL(sel(activate(y0), activate(y1)), from(x0))
SEL(s(X), cons(Y, Z)) → ACTIVATE(X)
SEL(s(n__dbl(y0)), cons(y1, x0)) → SEL(dbl(activate(y0)), x0)
DBL(s(X)) → ACTIVATE(X)
ACTIVATE(n__sel(n__indx(y0, y1), n__s(x0))) → SEL(indx(activate(y0), y1), s(x0))
ACTIVATE(n__sel(n__indx(y0, y1), n__sel(x0, x1))) → SEL(indx(activate(y0), y1), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(y0, n__from(x0))) → SEL(y0, from(x0))
ACTIVATE(n__sel(y0, x0)) → SEL(y0, x0)
SEL(s(n__sel(y0, y1)), cons(y2, n__s(x0))) → SEL(sel(activate(y0), activate(y1)), s(x0))
SEL(s(n__dbl(y0)), cons(y1, n__indx(x0, x1))) → SEL(dbl(activate(y0)), indx(activate(x0), x1))
ACTIVATE(n__dbls(n__dbls(x0))) → DBLS(dbls(activate(x0)))
ACTIVATE(n__sel(n__indx(y0, y1), x0)) → SEL(indx(activate(y0), y1), x0)
SEL(s(n__dbls(y0)), cons(y1, n__dbls(x0))) → SEL(dbls(activate(y0)), dbls(activate(x0)))
ACTIVATE(n__dbl(n__s(x0))) → DBL(s(x0))
SEL(s(n__dbl(y0)), cons(y1, n__dbl(x0))) → SEL(dbl(activate(y0)), dbl(activate(x0)))
ACTIVATE(n__sel(y0, n__indx(x0, x1))) → SEL(y0, indx(activate(x0), x1))
ACTIVATE(n__sel(n__indx(y0, y1), n__from(x0))) → SEL(indx(activate(y0), y1), from(x0))
SEL(s(y0), cons(y1, n__dbls(x0))) → SEL(y0, dbls(activate(x0)))
ACTIVATE(n__sel(n__dbls(y0), n__from(x0))) → SEL(dbls(activate(y0)), from(x0))
SEL(s(n__sel(y0, y1)), cons(y2, n__indx(x0, x1))) → SEL(sel(activate(y0), activate(y1)), indx(activate(x0), x1))
ACTIVATE(n__dbl(n__sel(x0, x1))) → DBL(sel(activate(x0), activate(x1)))
SEL(s(n__s(y0)), cons(y1, n__dbls(x0))) → SEL(s(y0), dbls(activate(x0)))
ACTIVATE(n__indx(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__indx(n__from(x0), y1)) → INDX(from(x0), y1)
SEL(s(n__indx(y0, y1)), cons(y2, x0)) → SEL(indx(activate(y0), y1), x0)
ACTIVATE(n__indx(n__dbl(x0), y1)) → INDX(dbl(activate(x0)), y1)
SEL(s(n__s(y0)), cons(y1, x0)) → SEL(s(y0), x0)
INDX(cons(X, Y), Z) → ACTIVATE(Y)
ACTIVATE(n__sel(n__dbl(y0), n__indx(x0, x1))) → SEL(dbl(activate(y0)), indx(activate(x0), x1))
ACTIVATE(n__indx(n__indx(x0, x1), y1)) → INDX(indx(activate(x0), x1), y1)
ACTIVATE(n__sel(n__s(y0), n__dbls(x0))) → SEL(s(y0), dbls(activate(x0)))
SEL(s(n__dbl(y0)), cons(y1, n__s(x0))) → SEL(dbl(activate(y0)), s(x0))
ACTIVATE(n__indx(n__sel(x0, x1), y1)) → INDX(sel(activate(x0), activate(x1)), y1)
INDX(cons(X, Y), Z) → ACTIVATE(Z)
SEL(s(n__s(y0)), cons(y1, n__s(x0))) → SEL(s(y0), s(x0))
ACTIVATE(n__sel(n__indx(y0, y1), n__dbl(x0))) → SEL(indx(activate(y0), y1), dbl(activate(x0)))
ACTIVATE(n__dbls(X)) → ACTIVATE(X)
SEL(0, cons(X, Y)) → ACTIVATE(X)
ACTIVATE(n__sel(n__dbls(y0), n__dbls(x0))) → SEL(dbls(activate(y0)), dbls(activate(x0)))
ACTIVATE(n__sel(y0, n__dbls(x0))) → SEL(y0, dbls(activate(x0)))
DBLS(cons(X, Y)) → ACTIVATE(Y)
SEL(s(n__dbls(y0)), cons(y1, n__dbl(x0))) → SEL(dbls(activate(y0)), dbl(activate(x0)))
SEL(s(n__dbl(y0)), cons(y1, n__dbls(x0))) → SEL(dbl(activate(y0)), dbls(activate(x0)))
ACTIVATE(n__sel(n__sel(y0, y1), n__s(x0))) → SEL(sel(activate(y0), activate(y1)), s(x0))
ACTIVATE(n__sel(y0, n__s(x0))) → SEL(y0, s(x0))
SEL(s(y0), cons(y1, n__sel(x0, x1))) → SEL(y0, sel(activate(x0), activate(x1)))
SEL(s(n__dbl(y0)), cons(y1, n__from(x0))) → SEL(dbl(activate(y0)), from(x0))
SEL(s(n__sel(y0, y1)), cons(y2, x0)) → SEL(sel(activate(y0), activate(y1)), x0)
SEL(s(n__s(y0)), cons(y1, n__from(x0))) → SEL(s(y0), from(x0))
ACTIVATE(n__sel(X1, X2)) → ACTIVATE(X2)
SEL(s(y0), cons(y1, n__dbl(x0))) → SEL(y0, dbl(activate(x0)))
ACTIVATE(n__sel(n__sel(y0, y1), n__from(x0))) → SEL(sel(activate(y0), activate(y1)), from(x0))
SEL(s(n__dbl(y0)), cons(y1, n__sel(x0, x1))) → SEL(dbl(activate(y0)), sel(activate(x0), activate(x1)))
SEL(s(n__indx(y0, y1)), cons(y2, n__indx(x0, x1))) → SEL(indx(activate(y0), y1), indx(activate(x0), x1))
SEL(s(n__indx(y0, y1)), cons(y2, n__from(x0))) → SEL(indx(activate(y0), y1), from(x0))
ACTIVATE(n__sel(n__sel(y0, y1), x0)) → SEL(sel(activate(y0), activate(y1)), x0)
FROM(X) → ACTIVATE(X)
ACTIVATE(n__dbls(n__sel(x0, x1))) → DBLS(sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__dbl(y0), n__s(x0))) → SEL(dbl(activate(y0)), s(x0))
SEL(s(n__dbls(y0)), cons(y1, n__indx(x0, x1))) → SEL(dbls(activate(y0)), indx(activate(x0), x1))
ACTIVATE(n__sel(n__dbls(y0), n__dbl(x0))) → SEL(dbls(activate(y0)), dbl(activate(x0)))
ACTIVATE(n__sel(n__dbl(y0), n__dbls(x0))) → SEL(dbl(activate(y0)), dbls(activate(x0)))
ACTIVATE(n__sel(n__dbl(y0), x0)) → SEL(dbl(activate(y0)), x0)
ACTIVATE(n__dbl(n__indx(x0, x1))) → DBL(indx(activate(x0), x1))
DBLS(cons(X, Y)) → ACTIVATE(X)
ACTIVATE(n__sel(n__dbls(y0), n__indx(x0, x1))) → SEL(dbls(activate(y0)), indx(activate(x0), x1))
ACTIVATE(n__sel(n__sel(y0, y1), n__sel(x0, x1))) → SEL(sel(activate(y0), activate(y1)), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(y0, n__sel(x0, x1))) → SEL(y0, sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__dbls(y0), n__s(x0))) → SEL(dbls(activate(y0)), s(x0))
ACTIVATE(n__sel(y0, n__dbl(x0))) → SEL(y0, dbl(activate(x0)))
ACTIVATE(n__dbls(n__dbl(x0))) → DBLS(dbl(activate(x0)))
ACTIVATE(n__dbls(n__indx(x0, x1))) → DBLS(indx(activate(x0), x1))
ACTIVATE(n__sel(n__sel(y0, y1), n__indx(x0, x1))) → SEL(sel(activate(y0), activate(y1)), indx(activate(x0), x1))
SEL(s(y0), cons(y1, x0)) → SEL(y0, x0)
SEL(s(n__indx(y0, y1)), cons(y2, n__s(x0))) → SEL(indx(activate(y0), y1), s(x0))
ACTIVATE(n__sel(n__dbls(y0), x0)) → SEL(dbls(activate(y0)), x0)
ACTIVATE(n__sel(n__s(y0), n__sel(x0, x1))) → SEL(s(y0), sel(activate(x0), activate(x1)))
SEL(s(n__dbls(y0)), cons(y1, x0)) → SEL(dbls(activate(y0)), x0)
SEL(s(n__indx(y0, y1)), cons(y2, n__dbls(x0))) → SEL(indx(activate(y0), y1), dbls(activate(x0)))
ACTIVATE(n__indx(x0, y1)) → INDX(x0, y1)
SEL(s(n__indx(y0, y1)), cons(y2, n__dbl(x0))) → SEL(indx(activate(y0), y1), dbl(activate(x0)))
ACTIVATE(n__sel(n__dbl(y0), n__dbl(x0))) → SEL(dbl(activate(y0)), dbl(activate(x0)))
ACTIVATE(n__sel(n__dbls(y0), n__sel(x0, x1))) → SEL(dbls(activate(y0)), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__sel(y0, y1), n__dbls(x0))) → SEL(sel(activate(y0), activate(y1)), dbls(activate(x0)))
ACTIVATE(n__sel(n__indx(y0, y1), n__dbls(x0))) → SEL(indx(activate(y0), y1), dbls(activate(x0)))
ACTIVATE(n__sel(n__dbl(y0), n__from(x0))) → SEL(dbl(activate(y0)), from(x0))
ACTIVATE(n__indx(n__dbls(x0), y1)) → INDX(dbls(activate(x0)), y1)
The TRS R consists of the following rules:
dbl(0) → 0
dbl(s(X)) → s(n__s(n__dbl(activate(X))))
dbls(nil) → nil
dbls(cons(X, Y)) → cons(n__dbl(activate(X)), n__dbls(activate(Y)))
sel(0, cons(X, Y)) → activate(X)
sel(s(X), cons(Y, Z)) → sel(activate(X), activate(Z))
indx(nil, X) → nil
indx(cons(X, Y), Z) → cons(n__sel(activate(X), activate(Z)), n__indx(activate(Y), activate(Z)))
from(X) → cons(activate(X), n__from(n__s(activate(X))))
s(X) → n__s(X)
dbl(X) → n__dbl(X)
dbls(X) → n__dbls(X)
sel(X1, X2) → n__sel(X1, X2)
indx(X1, X2) → n__indx(X1, X2)
from(X) → n__from(X)
activate(n__s(X)) → s(X)
activate(n__dbl(X)) → dbl(activate(X))
activate(n__dbls(X)) → dbls(activate(X))
activate(n__sel(X1, X2)) → sel(activate(X1), activate(X2))
activate(n__indx(X1, X2)) → indx(activate(X1), X2)
activate(n__from(X)) → from(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule SEL(s(n__dbl(y0)), cons(y1, n__s(x0))) → SEL(dbl(activate(y0)), s(x0)) at position [1] we obtained the following new rules:
SEL(s(n__dbl(y0)), cons(y1, n__s(x0))) → SEL(dbl(activate(y0)), n__s(x0))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE(n__sel(n__s(y0), n__indx(x0, x1))) → SEL(s(y0), indx(activate(x0), x1))
ACTIVATE(n__sel(n__s(y0), n__dbl(x0))) → SEL(s(y0), dbl(activate(x0)))
ACTIVATE(n__dbl(n__dbl(x0))) → DBL(dbl(activate(x0)))
SEL(s(X), cons(Y, Z)) → ACTIVATE(Z)
SEL(s(n__sel(y0, y1)), cons(y2, n__dbl(x0))) → SEL(sel(activate(y0), activate(y1)), dbl(activate(x0)))
ACTIVATE(n__dbl(X)) → ACTIVATE(X)
SEL(s(n__indx(y0, y1)), cons(y2, n__sel(x0, x1))) → SEL(indx(activate(y0), y1), sel(activate(x0), activate(x1)))
SEL(s(y0), cons(y1, n__from(x0))) → SEL(y0, from(x0))
ACTIVATE(n__sel(n__s(y0), x0)) → SEL(s(y0), x0)
ACTIVATE(n__from(X)) → FROM(X)
SEL(s(n__sel(y0, y1)), cons(y2, n__sel(x0, x1))) → SEL(sel(activate(y0), activate(y1)), sel(activate(x0), activate(x1)))
SEL(s(n__dbls(y0)), cons(y1, n__sel(x0, x1))) → SEL(dbls(activate(y0)), sel(activate(x0), activate(x1)))
SEL(s(y0), cons(y1, n__indx(x0, x1))) → SEL(y0, indx(activate(x0), x1))
ACTIVATE(n__dbls(x0)) → DBLS(x0)
ACTIVATE(n__sel(n__s(y0), n__s(x0))) → SEL(s(y0), s(x0))
ACTIVATE(n__sel(n__indx(y0, y1), n__indx(x0, x1))) → SEL(indx(activate(y0), y1), indx(activate(x0), x1))
SEL(s(n__sel(y0, y1)), cons(y2, n__dbls(x0))) → SEL(sel(activate(y0), activate(y1)), dbls(activate(x0)))
SEL(s(y0), cons(y1, n__s(x0))) → SEL(y0, s(x0))
ACTIVATE(n__dbl(n__dbls(x0))) → DBL(dbls(activate(x0)))
INDX(cons(X, Y), Z) → ACTIVATE(X)
ACTIVATE(n__dbl(x0)) → DBL(x0)
SEL(s(n__dbls(y0)), cons(y1, n__s(x0))) → SEL(dbls(activate(y0)), s(x0))
SEL(s(n__s(y0)), cons(y1, n__sel(x0, x1))) → SEL(s(y0), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__sel(y0, y1), n__dbl(x0))) → SEL(sel(activate(y0), activate(y1)), dbl(activate(x0)))
ACTIVATE(n__sel(n__dbl(y0), n__sel(x0, x1))) → SEL(dbl(activate(y0)), sel(activate(x0), activate(x1)))
SEL(s(n__dbls(y0)), cons(y1, n__from(x0))) → SEL(dbls(activate(y0)), from(x0))
SEL(s(n__s(y0)), cons(y1, n__dbl(x0))) → SEL(s(y0), dbl(activate(x0)))
ACTIVATE(n__dbls(n__from(x0))) → DBLS(from(x0))
ACTIVATE(n__sel(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__sel(n__s(y0), n__from(x0))) → SEL(s(y0), from(x0))
SEL(s(n__s(y0)), cons(y1, n__indx(x0, x1))) → SEL(s(y0), indx(activate(x0), x1))
SEL(s(n__sel(y0, y1)), cons(y2, n__from(x0))) → SEL(sel(activate(y0), activate(y1)), from(x0))
SEL(s(n__dbl(y0)), cons(y1, n__s(x0))) → SEL(dbl(activate(y0)), n__s(x0))
SEL(s(X), cons(Y, Z)) → ACTIVATE(X)
ACTIVATE(n__sel(n__indx(y0, y1), n__s(x0))) → SEL(indx(activate(y0), y1), s(x0))
DBL(s(X)) → ACTIVATE(X)
SEL(s(n__dbl(y0)), cons(y1, x0)) → SEL(dbl(activate(y0)), x0)
ACTIVATE(n__sel(n__indx(y0, y1), n__sel(x0, x1))) → SEL(indx(activate(y0), y1), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(y0, n__from(x0))) → SEL(y0, from(x0))
ACTIVATE(n__sel(y0, x0)) → SEL(y0, x0)
SEL(s(n__sel(y0, y1)), cons(y2, n__s(x0))) → SEL(sel(activate(y0), activate(y1)), s(x0))
ACTIVATE(n__dbls(n__dbls(x0))) → DBLS(dbls(activate(x0)))
SEL(s(n__dbl(y0)), cons(y1, n__indx(x0, x1))) → SEL(dbl(activate(y0)), indx(activate(x0), x1))
ACTIVATE(n__sel(n__indx(y0, y1), x0)) → SEL(indx(activate(y0), y1), x0)
SEL(s(n__dbls(y0)), cons(y1, n__dbls(x0))) → SEL(dbls(activate(y0)), dbls(activate(x0)))
ACTIVATE(n__dbl(n__s(x0))) → DBL(s(x0))
ACTIVATE(n__sel(y0, n__indx(x0, x1))) → SEL(y0, indx(activate(x0), x1))
SEL(s(n__dbl(y0)), cons(y1, n__dbl(x0))) → SEL(dbl(activate(y0)), dbl(activate(x0)))
ACTIVATE(n__sel(n__indx(y0, y1), n__from(x0))) → SEL(indx(activate(y0), y1), from(x0))
SEL(s(y0), cons(y1, n__dbls(x0))) → SEL(y0, dbls(activate(x0)))
SEL(s(n__sel(y0, y1)), cons(y2, n__indx(x0, x1))) → SEL(sel(activate(y0), activate(y1)), indx(activate(x0), x1))
ACTIVATE(n__sel(n__dbls(y0), n__from(x0))) → SEL(dbls(activate(y0)), from(x0))
ACTIVATE(n__dbl(n__sel(x0, x1))) → DBL(sel(activate(x0), activate(x1)))
SEL(s(n__s(y0)), cons(y1, n__dbls(x0))) → SEL(s(y0), dbls(activate(x0)))
ACTIVATE(n__indx(X1, X2)) → ACTIVATE(X1)
SEL(s(n__indx(y0, y1)), cons(y2, x0)) → SEL(indx(activate(y0), y1), x0)
ACTIVATE(n__indx(n__from(x0), y1)) → INDX(from(x0), y1)
ACTIVATE(n__indx(n__dbl(x0), y1)) → INDX(dbl(activate(x0)), y1)
SEL(s(n__s(y0)), cons(y1, x0)) → SEL(s(y0), x0)
INDX(cons(X, Y), Z) → ACTIVATE(Y)
ACTIVATE(n__sel(n__dbl(y0), n__indx(x0, x1))) → SEL(dbl(activate(y0)), indx(activate(x0), x1))
ACTIVATE(n__indx(n__indx(x0, x1), y1)) → INDX(indx(activate(x0), x1), y1)
ACTIVATE(n__sel(n__s(y0), n__dbls(x0))) → SEL(s(y0), dbls(activate(x0)))
ACTIVATE(n__indx(n__sel(x0, x1), y1)) → INDX(sel(activate(x0), activate(x1)), y1)
INDX(cons(X, Y), Z) → ACTIVATE(Z)
SEL(s(n__s(y0)), cons(y1, n__s(x0))) → SEL(s(y0), s(x0))
ACTIVATE(n__sel(n__indx(y0, y1), n__dbl(x0))) → SEL(indx(activate(y0), y1), dbl(activate(x0)))
ACTIVATE(n__dbls(X)) → ACTIVATE(X)
SEL(0, cons(X, Y)) → ACTIVATE(X)
ACTIVATE(n__sel(n__dbls(y0), n__dbls(x0))) → SEL(dbls(activate(y0)), dbls(activate(x0)))
ACTIVATE(n__sel(y0, n__dbls(x0))) → SEL(y0, dbls(activate(x0)))
DBLS(cons(X, Y)) → ACTIVATE(Y)
ACTIVATE(n__sel(n__sel(y0, y1), n__s(x0))) → SEL(sel(activate(y0), activate(y1)), s(x0))
SEL(s(n__dbl(y0)), cons(y1, n__dbls(x0))) → SEL(dbl(activate(y0)), dbls(activate(x0)))
SEL(s(n__dbls(y0)), cons(y1, n__dbl(x0))) → SEL(dbls(activate(y0)), dbl(activate(x0)))
ACTIVATE(n__sel(y0, n__s(x0))) → SEL(y0, s(x0))
SEL(s(y0), cons(y1, n__sel(x0, x1))) → SEL(y0, sel(activate(x0), activate(x1)))
SEL(s(n__dbl(y0)), cons(y1, n__from(x0))) → SEL(dbl(activate(y0)), from(x0))
SEL(s(n__sel(y0, y1)), cons(y2, x0)) → SEL(sel(activate(y0), activate(y1)), x0)
SEL(s(y0), cons(y1, n__dbl(x0))) → SEL(y0, dbl(activate(x0)))
ACTIVATE(n__sel(X1, X2)) → ACTIVATE(X2)
SEL(s(n__s(y0)), cons(y1, n__from(x0))) → SEL(s(y0), from(x0))
ACTIVATE(n__sel(n__sel(y0, y1), n__from(x0))) → SEL(sel(activate(y0), activate(y1)), from(x0))
SEL(s(n__dbl(y0)), cons(y1, n__sel(x0, x1))) → SEL(dbl(activate(y0)), sel(activate(x0), activate(x1)))
SEL(s(n__indx(y0, y1)), cons(y2, n__indx(x0, x1))) → SEL(indx(activate(y0), y1), indx(activate(x0), x1))
ACTIVATE(n__sel(n__sel(y0, y1), x0)) → SEL(sel(activate(y0), activate(y1)), x0)
SEL(s(n__indx(y0, y1)), cons(y2, n__from(x0))) → SEL(indx(activate(y0), y1), from(x0))
FROM(X) → ACTIVATE(X)
ACTIVATE(n__sel(n__dbl(y0), n__s(x0))) → SEL(dbl(activate(y0)), s(x0))
ACTIVATE(n__dbls(n__sel(x0, x1))) → DBLS(sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__dbl(y0), n__dbls(x0))) → SEL(dbl(activate(y0)), dbls(activate(x0)))
ACTIVATE(n__sel(n__dbls(y0), n__dbl(x0))) → SEL(dbls(activate(y0)), dbl(activate(x0)))
SEL(s(n__dbls(y0)), cons(y1, n__indx(x0, x1))) → SEL(dbls(activate(y0)), indx(activate(x0), x1))
ACTIVATE(n__sel(n__dbl(y0), x0)) → SEL(dbl(activate(y0)), x0)
ACTIVATE(n__dbl(n__indx(x0, x1))) → DBL(indx(activate(x0), x1))
DBLS(cons(X, Y)) → ACTIVATE(X)
ACTIVATE(n__sel(n__dbls(y0), n__indx(x0, x1))) → SEL(dbls(activate(y0)), indx(activate(x0), x1))
ACTIVATE(n__sel(n__sel(y0, y1), n__sel(x0, x1))) → SEL(sel(activate(y0), activate(y1)), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(y0, n__sel(x0, x1))) → SEL(y0, sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__dbls(y0), n__s(x0))) → SEL(dbls(activate(y0)), s(x0))
ACTIVATE(n__sel(y0, n__dbl(x0))) → SEL(y0, dbl(activate(x0)))
ACTIVATE(n__dbls(n__dbl(x0))) → DBLS(dbl(activate(x0)))
ACTIVATE(n__dbls(n__indx(x0, x1))) → DBLS(indx(activate(x0), x1))
SEL(s(y0), cons(y1, x0)) → SEL(y0, x0)
ACTIVATE(n__sel(n__sel(y0, y1), n__indx(x0, x1))) → SEL(sel(activate(y0), activate(y1)), indx(activate(x0), x1))
SEL(s(n__indx(y0, y1)), cons(y2, n__s(x0))) → SEL(indx(activate(y0), y1), s(x0))
ACTIVATE(n__sel(n__dbls(y0), x0)) → SEL(dbls(activate(y0)), x0)
ACTIVATE(n__sel(n__s(y0), n__sel(x0, x1))) → SEL(s(y0), sel(activate(x0), activate(x1)))
SEL(s(n__dbls(y0)), cons(y1, x0)) → SEL(dbls(activate(y0)), x0)
SEL(s(n__indx(y0, y1)), cons(y2, n__dbls(x0))) → SEL(indx(activate(y0), y1), dbls(activate(x0)))
ACTIVATE(n__indx(x0, y1)) → INDX(x0, y1)
SEL(s(n__indx(y0, y1)), cons(y2, n__dbl(x0))) → SEL(indx(activate(y0), y1), dbl(activate(x0)))
ACTIVATE(n__sel(n__dbl(y0), n__dbl(x0))) → SEL(dbl(activate(y0)), dbl(activate(x0)))
ACTIVATE(n__sel(n__sel(y0, y1), n__dbls(x0))) → SEL(sel(activate(y0), activate(y1)), dbls(activate(x0)))
ACTIVATE(n__sel(n__dbls(y0), n__sel(x0, x1))) → SEL(dbls(activate(y0)), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__indx(y0, y1), n__dbls(x0))) → SEL(indx(activate(y0), y1), dbls(activate(x0)))
ACTIVATE(n__sel(n__dbl(y0), n__from(x0))) → SEL(dbl(activate(y0)), from(x0))
ACTIVATE(n__indx(n__dbls(x0), y1)) → INDX(dbls(activate(x0)), y1)
The TRS R consists of the following rules:
dbl(0) → 0
dbl(s(X)) → s(n__s(n__dbl(activate(X))))
dbls(nil) → nil
dbls(cons(X, Y)) → cons(n__dbl(activate(X)), n__dbls(activate(Y)))
sel(0, cons(X, Y)) → activate(X)
sel(s(X), cons(Y, Z)) → sel(activate(X), activate(Z))
indx(nil, X) → nil
indx(cons(X, Y), Z) → cons(n__sel(activate(X), activate(Z)), n__indx(activate(Y), activate(Z)))
from(X) → cons(activate(X), n__from(n__s(activate(X))))
s(X) → n__s(X)
dbl(X) → n__dbl(X)
dbls(X) → n__dbls(X)
sel(X1, X2) → n__sel(X1, X2)
indx(X1, X2) → n__indx(X1, X2)
from(X) → n__from(X)
activate(n__s(X)) → s(X)
activate(n__dbl(X)) → dbl(activate(X))
activate(n__dbls(X)) → dbls(activate(X))
activate(n__sel(X1, X2)) → sel(activate(X1), activate(X2))
activate(n__indx(X1, X2)) → indx(activate(X1), X2)
activate(n__from(X)) → from(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE(n__sel(n__s(y0), n__indx(x0, x1))) → SEL(s(y0), indx(activate(x0), x1))
ACTIVATE(n__sel(n__s(y0), n__dbl(x0))) → SEL(s(y0), dbl(activate(x0)))
SEL(s(X), cons(Y, Z)) → ACTIVATE(Z)
ACTIVATE(n__dbl(n__dbl(x0))) → DBL(dbl(activate(x0)))
SEL(s(n__sel(y0, y1)), cons(y2, n__dbl(x0))) → SEL(sel(activate(y0), activate(y1)), dbl(activate(x0)))
ACTIVATE(n__dbl(X)) → ACTIVATE(X)
SEL(s(n__indx(y0, y1)), cons(y2, n__sel(x0, x1))) → SEL(indx(activate(y0), y1), sel(activate(x0), activate(x1)))
SEL(s(y0), cons(y1, n__from(x0))) → SEL(y0, from(x0))
ACTIVATE(n__sel(n__s(y0), x0)) → SEL(s(y0), x0)
ACTIVATE(n__from(X)) → FROM(X)
SEL(s(n__sel(y0, y1)), cons(y2, n__sel(x0, x1))) → SEL(sel(activate(y0), activate(y1)), sel(activate(x0), activate(x1)))
SEL(s(n__dbls(y0)), cons(y1, n__sel(x0, x1))) → SEL(dbls(activate(y0)), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__s(y0), n__s(x0))) → SEL(s(y0), s(x0))
ACTIVATE(n__dbls(x0)) → DBLS(x0)
SEL(s(y0), cons(y1, n__indx(x0, x1))) → SEL(y0, indx(activate(x0), x1))
SEL(s(n__sel(y0, y1)), cons(y2, n__dbls(x0))) → SEL(sel(activate(y0), activate(y1)), dbls(activate(x0)))
ACTIVATE(n__sel(n__indx(y0, y1), n__indx(x0, x1))) → SEL(indx(activate(y0), y1), indx(activate(x0), x1))
SEL(s(y0), cons(y1, n__s(x0))) → SEL(y0, s(x0))
ACTIVATE(n__dbl(n__dbls(x0))) → DBL(dbls(activate(x0)))
INDX(cons(X, Y), Z) → ACTIVATE(X)
ACTIVATE(n__dbl(x0)) → DBL(x0)
SEL(s(n__dbls(y0)), cons(y1, n__s(x0))) → SEL(dbls(activate(y0)), s(x0))
SEL(s(n__s(y0)), cons(y1, n__sel(x0, x1))) → SEL(s(y0), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__dbl(y0), n__sel(x0, x1))) → SEL(dbl(activate(y0)), sel(activate(x0), activate(x1)))
SEL(s(n__dbls(y0)), cons(y1, n__from(x0))) → SEL(dbls(activate(y0)), from(x0))
ACTIVATE(n__sel(n__sel(y0, y1), n__dbl(x0))) → SEL(sel(activate(y0), activate(y1)), dbl(activate(x0)))
SEL(s(n__s(y0)), cons(y1, n__dbl(x0))) → SEL(s(y0), dbl(activate(x0)))
ACTIVATE(n__sel(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__dbls(n__from(x0))) → DBLS(from(x0))
ACTIVATE(n__sel(n__s(y0), n__from(x0))) → SEL(s(y0), from(x0))
SEL(s(n__s(y0)), cons(y1, n__indx(x0, x1))) → SEL(s(y0), indx(activate(x0), x1))
SEL(s(n__sel(y0, y1)), cons(y2, n__from(x0))) → SEL(sel(activate(y0), activate(y1)), from(x0))
SEL(s(X), cons(Y, Z)) → ACTIVATE(X)
SEL(s(n__dbl(y0)), cons(y1, x0)) → SEL(dbl(activate(y0)), x0)
DBL(s(X)) → ACTIVATE(X)
ACTIVATE(n__sel(n__indx(y0, y1), n__s(x0))) → SEL(indx(activate(y0), y1), s(x0))
ACTIVATE(n__sel(n__indx(y0, y1), n__sel(x0, x1))) → SEL(indx(activate(y0), y1), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(y0, n__from(x0))) → SEL(y0, from(x0))
ACTIVATE(n__sel(y0, x0)) → SEL(y0, x0)
SEL(s(n__sel(y0, y1)), cons(y2, n__s(x0))) → SEL(sel(activate(y0), activate(y1)), s(x0))
SEL(s(n__dbl(y0)), cons(y1, n__indx(x0, x1))) → SEL(dbl(activate(y0)), indx(activate(x0), x1))
ACTIVATE(n__dbls(n__dbls(x0))) → DBLS(dbls(activate(x0)))
ACTIVATE(n__sel(n__indx(y0, y1), x0)) → SEL(indx(activate(y0), y1), x0)
SEL(s(n__dbls(y0)), cons(y1, n__dbls(x0))) → SEL(dbls(activate(y0)), dbls(activate(x0)))
ACTIVATE(n__dbl(n__s(x0))) → DBL(s(x0))
ACTIVATE(n__sel(y0, n__indx(x0, x1))) → SEL(y0, indx(activate(x0), x1))
SEL(s(n__dbl(y0)), cons(y1, n__dbl(x0))) → SEL(dbl(activate(y0)), dbl(activate(x0)))
ACTIVATE(n__sel(n__indx(y0, y1), n__from(x0))) → SEL(indx(activate(y0), y1), from(x0))
SEL(s(y0), cons(y1, n__dbls(x0))) → SEL(y0, dbls(activate(x0)))
ACTIVATE(n__sel(n__dbls(y0), n__from(x0))) → SEL(dbls(activate(y0)), from(x0))
SEL(s(n__sel(y0, y1)), cons(y2, n__indx(x0, x1))) → SEL(sel(activate(y0), activate(y1)), indx(activate(x0), x1))
ACTIVATE(n__dbl(n__sel(x0, x1))) → DBL(sel(activate(x0), activate(x1)))
SEL(s(n__s(y0)), cons(y1, n__dbls(x0))) → SEL(s(y0), dbls(activate(x0)))
ACTIVATE(n__indx(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__indx(n__from(x0), y1)) → INDX(from(x0), y1)
SEL(s(n__indx(y0, y1)), cons(y2, x0)) → SEL(indx(activate(y0), y1), x0)
ACTIVATE(n__indx(n__dbl(x0), y1)) → INDX(dbl(activate(x0)), y1)
SEL(s(n__s(y0)), cons(y1, x0)) → SEL(s(y0), x0)
INDX(cons(X, Y), Z) → ACTIVATE(Y)
ACTIVATE(n__sel(n__dbl(y0), n__indx(x0, x1))) → SEL(dbl(activate(y0)), indx(activate(x0), x1))
ACTIVATE(n__indx(n__indx(x0, x1), y1)) → INDX(indx(activate(x0), x1), y1)
ACTIVATE(n__sel(n__s(y0), n__dbls(x0))) → SEL(s(y0), dbls(activate(x0)))
ACTIVATE(n__indx(n__sel(x0, x1), y1)) → INDX(sel(activate(x0), activate(x1)), y1)
INDX(cons(X, Y), Z) → ACTIVATE(Z)
SEL(s(n__s(y0)), cons(y1, n__s(x0))) → SEL(s(y0), s(x0))
ACTIVATE(n__sel(n__indx(y0, y1), n__dbl(x0))) → SEL(indx(activate(y0), y1), dbl(activate(x0)))
ACTIVATE(n__dbls(X)) → ACTIVATE(X)
SEL(0, cons(X, Y)) → ACTIVATE(X)
ACTIVATE(n__sel(n__dbls(y0), n__dbls(x0))) → SEL(dbls(activate(y0)), dbls(activate(x0)))
ACTIVATE(n__sel(y0, n__dbls(x0))) → SEL(y0, dbls(activate(x0)))
DBLS(cons(X, Y)) → ACTIVATE(Y)
SEL(s(n__dbl(y0)), cons(y1, n__dbls(x0))) → SEL(dbl(activate(y0)), dbls(activate(x0)))
SEL(s(n__dbls(y0)), cons(y1, n__dbl(x0))) → SEL(dbls(activate(y0)), dbl(activate(x0)))
ACTIVATE(n__sel(n__sel(y0, y1), n__s(x0))) → SEL(sel(activate(y0), activate(y1)), s(x0))
ACTIVATE(n__sel(y0, n__s(x0))) → SEL(y0, s(x0))
SEL(s(y0), cons(y1, n__sel(x0, x1))) → SEL(y0, sel(activate(x0), activate(x1)))
SEL(s(n__dbl(y0)), cons(y1, n__from(x0))) → SEL(dbl(activate(y0)), from(x0))
SEL(s(n__sel(y0, y1)), cons(y2, x0)) → SEL(sel(activate(y0), activate(y1)), x0)
SEL(s(n__s(y0)), cons(y1, n__from(x0))) → SEL(s(y0), from(x0))
ACTIVATE(n__sel(X1, X2)) → ACTIVATE(X2)
SEL(s(y0), cons(y1, n__dbl(x0))) → SEL(y0, dbl(activate(x0)))
ACTIVATE(n__sel(n__sel(y0, y1), n__from(x0))) → SEL(sel(activate(y0), activate(y1)), from(x0))
SEL(s(n__dbl(y0)), cons(y1, n__sel(x0, x1))) → SEL(dbl(activate(y0)), sel(activate(x0), activate(x1)))
SEL(s(n__indx(y0, y1)), cons(y2, n__indx(x0, x1))) → SEL(indx(activate(y0), y1), indx(activate(x0), x1))
SEL(s(n__indx(y0, y1)), cons(y2, n__from(x0))) → SEL(indx(activate(y0), y1), from(x0))
ACTIVATE(n__sel(n__sel(y0, y1), x0)) → SEL(sel(activate(y0), activate(y1)), x0)
FROM(X) → ACTIVATE(X)
ACTIVATE(n__dbls(n__sel(x0, x1))) → DBLS(sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__dbl(y0), n__s(x0))) → SEL(dbl(activate(y0)), s(x0))
ACTIVATE(n__sel(n__dbls(y0), n__dbl(x0))) → SEL(dbls(activate(y0)), dbl(activate(x0)))
SEL(s(n__dbls(y0)), cons(y1, n__indx(x0, x1))) → SEL(dbls(activate(y0)), indx(activate(x0), x1))
ACTIVATE(n__sel(n__dbl(y0), n__dbls(x0))) → SEL(dbl(activate(y0)), dbls(activate(x0)))
ACTIVATE(n__sel(n__dbl(y0), x0)) → SEL(dbl(activate(y0)), x0)
ACTIVATE(n__dbl(n__indx(x0, x1))) → DBL(indx(activate(x0), x1))
DBLS(cons(X, Y)) → ACTIVATE(X)
ACTIVATE(n__sel(n__dbls(y0), n__indx(x0, x1))) → SEL(dbls(activate(y0)), indx(activate(x0), x1))
ACTIVATE(n__sel(n__sel(y0, y1), n__sel(x0, x1))) → SEL(sel(activate(y0), activate(y1)), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(y0, n__sel(x0, x1))) → SEL(y0, sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__dbls(y0), n__s(x0))) → SEL(dbls(activate(y0)), s(x0))
ACTIVATE(n__sel(y0, n__dbl(x0))) → SEL(y0, dbl(activate(x0)))
ACTIVATE(n__dbls(n__dbl(x0))) → DBLS(dbl(activate(x0)))
ACTIVATE(n__dbls(n__indx(x0, x1))) → DBLS(indx(activate(x0), x1))
SEL(s(y0), cons(y1, x0)) → SEL(y0, x0)
ACTIVATE(n__sel(n__sel(y0, y1), n__indx(x0, x1))) → SEL(sel(activate(y0), activate(y1)), indx(activate(x0), x1))
SEL(s(n__indx(y0, y1)), cons(y2, n__s(x0))) → SEL(indx(activate(y0), y1), s(x0))
ACTIVATE(n__sel(n__dbls(y0), x0)) → SEL(dbls(activate(y0)), x0)
ACTIVATE(n__sel(n__s(y0), n__sel(x0, x1))) → SEL(s(y0), sel(activate(x0), activate(x1)))
SEL(s(n__dbls(y0)), cons(y1, x0)) → SEL(dbls(activate(y0)), x0)
SEL(s(n__indx(y0, y1)), cons(y2, n__dbls(x0))) → SEL(indx(activate(y0), y1), dbls(activate(x0)))
ACTIVATE(n__indx(x0, y1)) → INDX(x0, y1)
SEL(s(n__indx(y0, y1)), cons(y2, n__dbl(x0))) → SEL(indx(activate(y0), y1), dbl(activate(x0)))
ACTIVATE(n__sel(n__dbl(y0), n__dbl(x0))) → SEL(dbl(activate(y0)), dbl(activate(x0)))
ACTIVATE(n__sel(n__dbls(y0), n__sel(x0, x1))) → SEL(dbls(activate(y0)), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__sel(y0, y1), n__dbls(x0))) → SEL(sel(activate(y0), activate(y1)), dbls(activate(x0)))
ACTIVATE(n__sel(n__indx(y0, y1), n__dbls(x0))) → SEL(indx(activate(y0), y1), dbls(activate(x0)))
ACTIVATE(n__sel(n__dbl(y0), n__from(x0))) → SEL(dbl(activate(y0)), from(x0))
ACTIVATE(n__indx(n__dbls(x0), y1)) → INDX(dbls(activate(x0)), y1)
The TRS R consists of the following rules:
dbl(0) → 0
dbl(s(X)) → s(n__s(n__dbl(activate(X))))
dbls(nil) → nil
dbls(cons(X, Y)) → cons(n__dbl(activate(X)), n__dbls(activate(Y)))
sel(0, cons(X, Y)) → activate(X)
sel(s(X), cons(Y, Z)) → sel(activate(X), activate(Z))
indx(nil, X) → nil
indx(cons(X, Y), Z) → cons(n__sel(activate(X), activate(Z)), n__indx(activate(Y), activate(Z)))
from(X) → cons(activate(X), n__from(n__s(activate(X))))
s(X) → n__s(X)
dbl(X) → n__dbl(X)
dbls(X) → n__dbls(X)
sel(X1, X2) → n__sel(X1, X2)
indx(X1, X2) → n__indx(X1, X2)
from(X) → n__from(X)
activate(n__s(X)) → s(X)
activate(n__dbl(X)) → dbl(activate(X))
activate(n__dbls(X)) → dbls(activate(X))
activate(n__sel(X1, X2)) → sel(activate(X1), activate(X2))
activate(n__indx(X1, X2)) → indx(activate(X1), X2)
activate(n__from(X)) → from(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule SEL(s(n__s(y0)), cons(y1, n__s(x0))) → SEL(s(y0), s(x0)) at position [1] we obtained the following new rules:
SEL(s(n__s(y0)), cons(y1, n__s(x0))) → SEL(s(y0), n__s(x0))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE(n__dbl(n__dbl(x0))) → DBL(dbl(activate(x0)))
SEL(s(X), cons(Y, Z)) → ACTIVATE(Z)
ACTIVATE(n__sel(n__s(y0), n__dbl(x0))) → SEL(s(y0), dbl(activate(x0)))
ACTIVATE(n__sel(n__s(y0), n__indx(x0, x1))) → SEL(s(y0), indx(activate(x0), x1))
SEL(s(n__sel(y0, y1)), cons(y2, n__dbl(x0))) → SEL(sel(activate(y0), activate(y1)), dbl(activate(x0)))
ACTIVATE(n__dbl(X)) → ACTIVATE(X)
SEL(s(n__indx(y0, y1)), cons(y2, n__sel(x0, x1))) → SEL(indx(activate(y0), y1), sel(activate(x0), activate(x1)))
SEL(s(y0), cons(y1, n__from(x0))) → SEL(y0, from(x0))
ACTIVATE(n__sel(n__s(y0), x0)) → SEL(s(y0), x0)
ACTIVATE(n__from(X)) → FROM(X)
SEL(s(n__sel(y0, y1)), cons(y2, n__sel(x0, x1))) → SEL(sel(activate(y0), activate(y1)), sel(activate(x0), activate(x1)))
SEL(s(n__dbls(y0)), cons(y1, n__sel(x0, x1))) → SEL(dbls(activate(y0)), sel(activate(x0), activate(x1)))
SEL(s(y0), cons(y1, n__indx(x0, x1))) → SEL(y0, indx(activate(x0), x1))
ACTIVATE(n__dbls(x0)) → DBLS(x0)
ACTIVATE(n__sel(n__s(y0), n__s(x0))) → SEL(s(y0), s(x0))
ACTIVATE(n__sel(n__indx(y0, y1), n__indx(x0, x1))) → SEL(indx(activate(y0), y1), indx(activate(x0), x1))
SEL(s(n__sel(y0, y1)), cons(y2, n__dbls(x0))) → SEL(sel(activate(y0), activate(y1)), dbls(activate(x0)))
SEL(s(y0), cons(y1, n__s(x0))) → SEL(y0, s(x0))
ACTIVATE(n__dbl(n__dbls(x0))) → DBL(dbls(activate(x0)))
INDX(cons(X, Y), Z) → ACTIVATE(X)
ACTIVATE(n__dbl(x0)) → DBL(x0)
SEL(s(n__dbls(y0)), cons(y1, n__s(x0))) → SEL(dbls(activate(y0)), s(x0))
SEL(s(n__s(y0)), cons(y1, n__sel(x0, x1))) → SEL(s(y0), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__sel(y0, y1), n__dbl(x0))) → SEL(sel(activate(y0), activate(y1)), dbl(activate(x0)))
SEL(s(n__dbls(y0)), cons(y1, n__from(x0))) → SEL(dbls(activate(y0)), from(x0))
ACTIVATE(n__sel(n__dbl(y0), n__sel(x0, x1))) → SEL(dbl(activate(y0)), sel(activate(x0), activate(x1)))
ACTIVATE(n__dbls(n__from(x0))) → DBLS(from(x0))
ACTIVATE(n__sel(X1, X2)) → ACTIVATE(X1)
SEL(s(n__s(y0)), cons(y1, n__dbl(x0))) → SEL(s(y0), dbl(activate(x0)))
ACTIVATE(n__sel(n__s(y0), n__from(x0))) → SEL(s(y0), from(x0))
SEL(s(n__s(y0)), cons(y1, n__indx(x0, x1))) → SEL(s(y0), indx(activate(x0), x1))
SEL(s(n__sel(y0, y1)), cons(y2, n__from(x0))) → SEL(sel(activate(y0), activate(y1)), from(x0))
SEL(s(X), cons(Y, Z)) → ACTIVATE(X)
ACTIVATE(n__sel(n__indx(y0, y1), n__s(x0))) → SEL(indx(activate(y0), y1), s(x0))
DBL(s(X)) → ACTIVATE(X)
SEL(s(n__dbl(y0)), cons(y1, x0)) → SEL(dbl(activate(y0)), x0)
ACTIVATE(n__sel(n__indx(y0, y1), n__sel(x0, x1))) → SEL(indx(activate(y0), y1), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(y0, n__from(x0))) → SEL(y0, from(x0))
ACTIVATE(n__sel(y0, x0)) → SEL(y0, x0)
SEL(s(n__sel(y0, y1)), cons(y2, n__s(x0))) → SEL(sel(activate(y0), activate(y1)), s(x0))
ACTIVATE(n__dbls(n__dbls(x0))) → DBLS(dbls(activate(x0)))
SEL(s(n__dbl(y0)), cons(y1, n__indx(x0, x1))) → SEL(dbl(activate(y0)), indx(activate(x0), x1))
ACTIVATE(n__sel(n__indx(y0, y1), x0)) → SEL(indx(activate(y0), y1), x0)
SEL(s(n__dbls(y0)), cons(y1, n__dbls(x0))) → SEL(dbls(activate(y0)), dbls(activate(x0)))
ACTIVATE(n__dbl(n__s(x0))) → DBL(s(x0))
SEL(s(n__dbl(y0)), cons(y1, n__dbl(x0))) → SEL(dbl(activate(y0)), dbl(activate(x0)))
ACTIVATE(n__sel(y0, n__indx(x0, x1))) → SEL(y0, indx(activate(x0), x1))
ACTIVATE(n__sel(n__indx(y0, y1), n__from(x0))) → SEL(indx(activate(y0), y1), from(x0))
SEL(s(y0), cons(y1, n__dbls(x0))) → SEL(y0, dbls(activate(x0)))
SEL(s(n__sel(y0, y1)), cons(y2, n__indx(x0, x1))) → SEL(sel(activate(y0), activate(y1)), indx(activate(x0), x1))
ACTIVATE(n__sel(n__dbls(y0), n__from(x0))) → SEL(dbls(activate(y0)), from(x0))
ACTIVATE(n__dbl(n__sel(x0, x1))) → DBL(sel(activate(x0), activate(x1)))
SEL(s(n__s(y0)), cons(y1, n__dbls(x0))) → SEL(s(y0), dbls(activate(x0)))
ACTIVATE(n__indx(X1, X2)) → ACTIVATE(X1)
SEL(s(n__indx(y0, y1)), cons(y2, x0)) → SEL(indx(activate(y0), y1), x0)
ACTIVATE(n__indx(n__from(x0), y1)) → INDX(from(x0), y1)
ACTIVATE(n__indx(n__dbl(x0), y1)) → INDX(dbl(activate(x0)), y1)
SEL(s(n__s(y0)), cons(y1, x0)) → SEL(s(y0), x0)
INDX(cons(X, Y), Z) → ACTIVATE(Y)
ACTIVATE(n__sel(n__dbl(y0), n__indx(x0, x1))) → SEL(dbl(activate(y0)), indx(activate(x0), x1))
ACTIVATE(n__indx(n__indx(x0, x1), y1)) → INDX(indx(activate(x0), x1), y1)
ACTIVATE(n__sel(n__s(y0), n__dbls(x0))) → SEL(s(y0), dbls(activate(x0)))
SEL(s(n__s(y0)), cons(y1, n__s(x0))) → SEL(s(y0), n__s(x0))
ACTIVATE(n__indx(n__sel(x0, x1), y1)) → INDX(sel(activate(x0), activate(x1)), y1)
INDX(cons(X, Y), Z) → ACTIVATE(Z)
ACTIVATE(n__sel(n__indx(y0, y1), n__dbl(x0))) → SEL(indx(activate(y0), y1), dbl(activate(x0)))
ACTIVATE(n__dbls(X)) → ACTIVATE(X)
SEL(0, cons(X, Y)) → ACTIVATE(X)
ACTIVATE(n__sel(n__dbls(y0), n__dbls(x0))) → SEL(dbls(activate(y0)), dbls(activate(x0)))
ACTIVATE(n__sel(y0, n__dbls(x0))) → SEL(y0, dbls(activate(x0)))
DBLS(cons(X, Y)) → ACTIVATE(Y)
ACTIVATE(n__sel(n__sel(y0, y1), n__s(x0))) → SEL(sel(activate(y0), activate(y1)), s(x0))
SEL(s(n__dbls(y0)), cons(y1, n__dbl(x0))) → SEL(dbls(activate(y0)), dbl(activate(x0)))
SEL(s(n__dbl(y0)), cons(y1, n__dbls(x0))) → SEL(dbl(activate(y0)), dbls(activate(x0)))
ACTIVATE(n__sel(y0, n__s(x0))) → SEL(y0, s(x0))
SEL(s(y0), cons(y1, n__sel(x0, x1))) → SEL(y0, sel(activate(x0), activate(x1)))
SEL(s(n__dbl(y0)), cons(y1, n__from(x0))) → SEL(dbl(activate(y0)), from(x0))
SEL(s(n__sel(y0, y1)), cons(y2, x0)) → SEL(sel(activate(y0), activate(y1)), x0)
SEL(s(y0), cons(y1, n__dbl(x0))) → SEL(y0, dbl(activate(x0)))
ACTIVATE(n__sel(X1, X2)) → ACTIVATE(X2)
SEL(s(n__s(y0)), cons(y1, n__from(x0))) → SEL(s(y0), from(x0))
ACTIVATE(n__sel(n__sel(y0, y1), n__from(x0))) → SEL(sel(activate(y0), activate(y1)), from(x0))
SEL(s(n__dbl(y0)), cons(y1, n__sel(x0, x1))) → SEL(dbl(activate(y0)), sel(activate(x0), activate(x1)))
SEL(s(n__indx(y0, y1)), cons(y2, n__indx(x0, x1))) → SEL(indx(activate(y0), y1), indx(activate(x0), x1))
ACTIVATE(n__sel(n__sel(y0, y1), x0)) → SEL(sel(activate(y0), activate(y1)), x0)
SEL(s(n__indx(y0, y1)), cons(y2, n__from(x0))) → SEL(indx(activate(y0), y1), from(x0))
FROM(X) → ACTIVATE(X)
ACTIVATE(n__sel(n__dbl(y0), n__s(x0))) → SEL(dbl(activate(y0)), s(x0))
ACTIVATE(n__dbls(n__sel(x0, x1))) → DBLS(sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__dbl(y0), n__dbls(x0))) → SEL(dbl(activate(y0)), dbls(activate(x0)))
SEL(s(n__dbls(y0)), cons(y1, n__indx(x0, x1))) → SEL(dbls(activate(y0)), indx(activate(x0), x1))
ACTIVATE(n__sel(n__dbls(y0), n__dbl(x0))) → SEL(dbls(activate(y0)), dbl(activate(x0)))
ACTIVATE(n__sel(n__dbl(y0), x0)) → SEL(dbl(activate(y0)), x0)
ACTIVATE(n__dbl(n__indx(x0, x1))) → DBL(indx(activate(x0), x1))
DBLS(cons(X, Y)) → ACTIVATE(X)
ACTIVATE(n__sel(n__dbls(y0), n__indx(x0, x1))) → SEL(dbls(activate(y0)), indx(activate(x0), x1))
ACTIVATE(n__sel(n__sel(y0, y1), n__sel(x0, x1))) → SEL(sel(activate(y0), activate(y1)), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(y0, n__sel(x0, x1))) → SEL(y0, sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__dbls(y0), n__s(x0))) → SEL(dbls(activate(y0)), s(x0))
ACTIVATE(n__sel(y0, n__dbl(x0))) → SEL(y0, dbl(activate(x0)))
ACTIVATE(n__dbls(n__dbl(x0))) → DBLS(dbl(activate(x0)))
ACTIVATE(n__dbls(n__indx(x0, x1))) → DBLS(indx(activate(x0), x1))
ACTIVATE(n__sel(n__sel(y0, y1), n__indx(x0, x1))) → SEL(sel(activate(y0), activate(y1)), indx(activate(x0), x1))
SEL(s(y0), cons(y1, x0)) → SEL(y0, x0)
SEL(s(n__indx(y0, y1)), cons(y2, n__s(x0))) → SEL(indx(activate(y0), y1), s(x0))
ACTIVATE(n__sel(n__dbls(y0), x0)) → SEL(dbls(activate(y0)), x0)
ACTIVATE(n__sel(n__s(y0), n__sel(x0, x1))) → SEL(s(y0), sel(activate(x0), activate(x1)))
SEL(s(n__dbls(y0)), cons(y1, x0)) → SEL(dbls(activate(y0)), x0)
SEL(s(n__indx(y0, y1)), cons(y2, n__dbls(x0))) → SEL(indx(activate(y0), y1), dbls(activate(x0)))
ACTIVATE(n__indx(x0, y1)) → INDX(x0, y1)
SEL(s(n__indx(y0, y1)), cons(y2, n__dbl(x0))) → SEL(indx(activate(y0), y1), dbl(activate(x0)))
ACTIVATE(n__sel(n__dbl(y0), n__dbl(x0))) → SEL(dbl(activate(y0)), dbl(activate(x0)))
ACTIVATE(n__sel(n__sel(y0, y1), n__dbls(x0))) → SEL(sel(activate(y0), activate(y1)), dbls(activate(x0)))
ACTIVATE(n__sel(n__dbls(y0), n__sel(x0, x1))) → SEL(dbls(activate(y0)), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__indx(y0, y1), n__dbls(x0))) → SEL(indx(activate(y0), y1), dbls(activate(x0)))
ACTIVATE(n__sel(n__dbl(y0), n__from(x0))) → SEL(dbl(activate(y0)), from(x0))
ACTIVATE(n__indx(n__dbls(x0), y1)) → INDX(dbls(activate(x0)), y1)
The TRS R consists of the following rules:
dbl(0) → 0
dbl(s(X)) → s(n__s(n__dbl(activate(X))))
dbls(nil) → nil
dbls(cons(X, Y)) → cons(n__dbl(activate(X)), n__dbls(activate(Y)))
sel(0, cons(X, Y)) → activate(X)
sel(s(X), cons(Y, Z)) → sel(activate(X), activate(Z))
indx(nil, X) → nil
indx(cons(X, Y), Z) → cons(n__sel(activate(X), activate(Z)), n__indx(activate(Y), activate(Z)))
from(X) → cons(activate(X), n__from(n__s(activate(X))))
s(X) → n__s(X)
dbl(X) → n__dbl(X)
dbls(X) → n__dbls(X)
sel(X1, X2) → n__sel(X1, X2)
indx(X1, X2) → n__indx(X1, X2)
from(X) → n__from(X)
activate(n__s(X)) → s(X)
activate(n__dbl(X)) → dbl(activate(X))
activate(n__dbls(X)) → dbls(activate(X))
activate(n__sel(X1, X2)) → sel(activate(X1), activate(X2))
activate(n__indx(X1, X2)) → indx(activate(X1), X2)
activate(n__from(X)) → from(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE(n__sel(n__s(y0), n__indx(x0, x1))) → SEL(s(y0), indx(activate(x0), x1))
ACTIVATE(n__sel(n__s(y0), n__dbl(x0))) → SEL(s(y0), dbl(activate(x0)))
SEL(s(X), cons(Y, Z)) → ACTIVATE(Z)
ACTIVATE(n__dbl(n__dbl(x0))) → DBL(dbl(activate(x0)))
SEL(s(n__sel(y0, y1)), cons(y2, n__dbl(x0))) → SEL(sel(activate(y0), activate(y1)), dbl(activate(x0)))
ACTIVATE(n__dbl(X)) → ACTIVATE(X)
SEL(s(n__indx(y0, y1)), cons(y2, n__sel(x0, x1))) → SEL(indx(activate(y0), y1), sel(activate(x0), activate(x1)))
SEL(s(y0), cons(y1, n__from(x0))) → SEL(y0, from(x0))
ACTIVATE(n__sel(n__s(y0), x0)) → SEL(s(y0), x0)
ACTIVATE(n__from(X)) → FROM(X)
SEL(s(n__sel(y0, y1)), cons(y2, n__sel(x0, x1))) → SEL(sel(activate(y0), activate(y1)), sel(activate(x0), activate(x1)))
SEL(s(n__dbls(y0)), cons(y1, n__sel(x0, x1))) → SEL(dbls(activate(y0)), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__s(y0), n__s(x0))) → SEL(s(y0), s(x0))
ACTIVATE(n__dbls(x0)) → DBLS(x0)
SEL(s(y0), cons(y1, n__indx(x0, x1))) → SEL(y0, indx(activate(x0), x1))
SEL(s(n__sel(y0, y1)), cons(y2, n__dbls(x0))) → SEL(sel(activate(y0), activate(y1)), dbls(activate(x0)))
ACTIVATE(n__sel(n__indx(y0, y1), n__indx(x0, x1))) → SEL(indx(activate(y0), y1), indx(activate(x0), x1))
SEL(s(y0), cons(y1, n__s(x0))) → SEL(y0, s(x0))
ACTIVATE(n__dbl(n__dbls(x0))) → DBL(dbls(activate(x0)))
INDX(cons(X, Y), Z) → ACTIVATE(X)
ACTIVATE(n__dbl(x0)) → DBL(x0)
SEL(s(n__dbls(y0)), cons(y1, n__s(x0))) → SEL(dbls(activate(y0)), s(x0))
SEL(s(n__s(y0)), cons(y1, n__sel(x0, x1))) → SEL(s(y0), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__dbl(y0), n__sel(x0, x1))) → SEL(dbl(activate(y0)), sel(activate(x0), activate(x1)))
SEL(s(n__dbls(y0)), cons(y1, n__from(x0))) → SEL(dbls(activate(y0)), from(x0))
ACTIVATE(n__sel(n__sel(y0, y1), n__dbl(x0))) → SEL(sel(activate(y0), activate(y1)), dbl(activate(x0)))
SEL(s(n__s(y0)), cons(y1, n__dbl(x0))) → SEL(s(y0), dbl(activate(x0)))
ACTIVATE(n__sel(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__dbls(n__from(x0))) → DBLS(from(x0))
ACTIVATE(n__sel(n__s(y0), n__from(x0))) → SEL(s(y0), from(x0))
SEL(s(n__s(y0)), cons(y1, n__indx(x0, x1))) → SEL(s(y0), indx(activate(x0), x1))
SEL(s(n__sel(y0, y1)), cons(y2, n__from(x0))) → SEL(sel(activate(y0), activate(y1)), from(x0))
SEL(s(X), cons(Y, Z)) → ACTIVATE(X)
SEL(s(n__dbl(y0)), cons(y1, x0)) → SEL(dbl(activate(y0)), x0)
DBL(s(X)) → ACTIVATE(X)
ACTIVATE(n__sel(n__indx(y0, y1), n__s(x0))) → SEL(indx(activate(y0), y1), s(x0))
ACTIVATE(n__sel(n__indx(y0, y1), n__sel(x0, x1))) → SEL(indx(activate(y0), y1), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(y0, n__from(x0))) → SEL(y0, from(x0))
ACTIVATE(n__sel(y0, x0)) → SEL(y0, x0)
SEL(s(n__sel(y0, y1)), cons(y2, n__s(x0))) → SEL(sel(activate(y0), activate(y1)), s(x0))
SEL(s(n__dbl(y0)), cons(y1, n__indx(x0, x1))) → SEL(dbl(activate(y0)), indx(activate(x0), x1))
ACTIVATE(n__dbls(n__dbls(x0))) → DBLS(dbls(activate(x0)))
ACTIVATE(n__sel(n__indx(y0, y1), x0)) → SEL(indx(activate(y0), y1), x0)
SEL(s(n__dbls(y0)), cons(y1, n__dbls(x0))) → SEL(dbls(activate(y0)), dbls(activate(x0)))
ACTIVATE(n__dbl(n__s(x0))) → DBL(s(x0))
ACTIVATE(n__sel(y0, n__indx(x0, x1))) → SEL(y0, indx(activate(x0), x1))
SEL(s(n__dbl(y0)), cons(y1, n__dbl(x0))) → SEL(dbl(activate(y0)), dbl(activate(x0)))
ACTIVATE(n__sel(n__indx(y0, y1), n__from(x0))) → SEL(indx(activate(y0), y1), from(x0))
SEL(s(y0), cons(y1, n__dbls(x0))) → SEL(y0, dbls(activate(x0)))
ACTIVATE(n__sel(n__dbls(y0), n__from(x0))) → SEL(dbls(activate(y0)), from(x0))
SEL(s(n__sel(y0, y1)), cons(y2, n__indx(x0, x1))) → SEL(sel(activate(y0), activate(y1)), indx(activate(x0), x1))
ACTIVATE(n__dbl(n__sel(x0, x1))) → DBL(sel(activate(x0), activate(x1)))
SEL(s(n__s(y0)), cons(y1, n__dbls(x0))) → SEL(s(y0), dbls(activate(x0)))
ACTIVATE(n__indx(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__indx(n__from(x0), y1)) → INDX(from(x0), y1)
SEL(s(n__indx(y0, y1)), cons(y2, x0)) → SEL(indx(activate(y0), y1), x0)
ACTIVATE(n__indx(n__dbl(x0), y1)) → INDX(dbl(activate(x0)), y1)
SEL(s(n__s(y0)), cons(y1, x0)) → SEL(s(y0), x0)
INDX(cons(X, Y), Z) → ACTIVATE(Y)
ACTIVATE(n__sel(n__dbl(y0), n__indx(x0, x1))) → SEL(dbl(activate(y0)), indx(activate(x0), x1))
ACTIVATE(n__indx(n__indx(x0, x1), y1)) → INDX(indx(activate(x0), x1), y1)
ACTIVATE(n__sel(n__s(y0), n__dbls(x0))) → SEL(s(y0), dbls(activate(x0)))
ACTIVATE(n__indx(n__sel(x0, x1), y1)) → INDX(sel(activate(x0), activate(x1)), y1)
INDX(cons(X, Y), Z) → ACTIVATE(Z)
ACTIVATE(n__sel(n__indx(y0, y1), n__dbl(x0))) → SEL(indx(activate(y0), y1), dbl(activate(x0)))
ACTIVATE(n__dbls(X)) → ACTIVATE(X)
SEL(0, cons(X, Y)) → ACTIVATE(X)
ACTIVATE(n__sel(n__dbls(y0), n__dbls(x0))) → SEL(dbls(activate(y0)), dbls(activate(x0)))
ACTIVATE(n__sel(y0, n__dbls(x0))) → SEL(y0, dbls(activate(x0)))
DBLS(cons(X, Y)) → ACTIVATE(Y)
SEL(s(n__dbl(y0)), cons(y1, n__dbls(x0))) → SEL(dbl(activate(y0)), dbls(activate(x0)))
SEL(s(n__dbls(y0)), cons(y1, n__dbl(x0))) → SEL(dbls(activate(y0)), dbl(activate(x0)))
ACTIVATE(n__sel(n__sel(y0, y1), n__s(x0))) → SEL(sel(activate(y0), activate(y1)), s(x0))
ACTIVATE(n__sel(y0, n__s(x0))) → SEL(y0, s(x0))
SEL(s(y0), cons(y1, n__sel(x0, x1))) → SEL(y0, sel(activate(x0), activate(x1)))
SEL(s(n__dbl(y0)), cons(y1, n__from(x0))) → SEL(dbl(activate(y0)), from(x0))
SEL(s(n__sel(y0, y1)), cons(y2, x0)) → SEL(sel(activate(y0), activate(y1)), x0)
SEL(s(n__s(y0)), cons(y1, n__from(x0))) → SEL(s(y0), from(x0))
ACTIVATE(n__sel(X1, X2)) → ACTIVATE(X2)
SEL(s(y0), cons(y1, n__dbl(x0))) → SEL(y0, dbl(activate(x0)))
ACTIVATE(n__sel(n__sel(y0, y1), n__from(x0))) → SEL(sel(activate(y0), activate(y1)), from(x0))
SEL(s(n__dbl(y0)), cons(y1, n__sel(x0, x1))) → SEL(dbl(activate(y0)), sel(activate(x0), activate(x1)))
SEL(s(n__indx(y0, y1)), cons(y2, n__indx(x0, x1))) → SEL(indx(activate(y0), y1), indx(activate(x0), x1))
SEL(s(n__indx(y0, y1)), cons(y2, n__from(x0))) → SEL(indx(activate(y0), y1), from(x0))
ACTIVATE(n__sel(n__sel(y0, y1), x0)) → SEL(sel(activate(y0), activate(y1)), x0)
FROM(X) → ACTIVATE(X)
ACTIVATE(n__dbls(n__sel(x0, x1))) → DBLS(sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__dbl(y0), n__s(x0))) → SEL(dbl(activate(y0)), s(x0))
ACTIVATE(n__sel(n__dbls(y0), n__dbl(x0))) → SEL(dbls(activate(y0)), dbl(activate(x0)))
SEL(s(n__dbls(y0)), cons(y1, n__indx(x0, x1))) → SEL(dbls(activate(y0)), indx(activate(x0), x1))
ACTIVATE(n__sel(n__dbl(y0), n__dbls(x0))) → SEL(dbl(activate(y0)), dbls(activate(x0)))
ACTIVATE(n__sel(n__dbl(y0), x0)) → SEL(dbl(activate(y0)), x0)
ACTIVATE(n__dbl(n__indx(x0, x1))) → DBL(indx(activate(x0), x1))
DBLS(cons(X, Y)) → ACTIVATE(X)
ACTIVATE(n__sel(n__dbls(y0), n__indx(x0, x1))) → SEL(dbls(activate(y0)), indx(activate(x0), x1))
ACTIVATE(n__sel(n__sel(y0, y1), n__sel(x0, x1))) → SEL(sel(activate(y0), activate(y1)), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(y0, n__sel(x0, x1))) → SEL(y0, sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__dbls(y0), n__s(x0))) → SEL(dbls(activate(y0)), s(x0))
ACTIVATE(n__sel(y0, n__dbl(x0))) → SEL(y0, dbl(activate(x0)))
ACTIVATE(n__dbls(n__dbl(x0))) → DBLS(dbl(activate(x0)))
ACTIVATE(n__dbls(n__indx(x0, x1))) → DBLS(indx(activate(x0), x1))
SEL(s(y0), cons(y1, x0)) → SEL(y0, x0)
ACTIVATE(n__sel(n__sel(y0, y1), n__indx(x0, x1))) → SEL(sel(activate(y0), activate(y1)), indx(activate(x0), x1))
SEL(s(n__indx(y0, y1)), cons(y2, n__s(x0))) → SEL(indx(activate(y0), y1), s(x0))
ACTIVATE(n__sel(n__dbls(y0), x0)) → SEL(dbls(activate(y0)), x0)
ACTIVATE(n__sel(n__s(y0), n__sel(x0, x1))) → SEL(s(y0), sel(activate(x0), activate(x1)))
SEL(s(n__dbls(y0)), cons(y1, x0)) → SEL(dbls(activate(y0)), x0)
SEL(s(n__indx(y0, y1)), cons(y2, n__dbls(x0))) → SEL(indx(activate(y0), y1), dbls(activate(x0)))
ACTIVATE(n__indx(x0, y1)) → INDX(x0, y1)
SEL(s(n__indx(y0, y1)), cons(y2, n__dbl(x0))) → SEL(indx(activate(y0), y1), dbl(activate(x0)))
ACTIVATE(n__sel(n__dbl(y0), n__dbl(x0))) → SEL(dbl(activate(y0)), dbl(activate(x0)))
ACTIVATE(n__sel(n__dbls(y0), n__sel(x0, x1))) → SEL(dbls(activate(y0)), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__sel(y0, y1), n__dbls(x0))) → SEL(sel(activate(y0), activate(y1)), dbls(activate(x0)))
ACTIVATE(n__sel(n__indx(y0, y1), n__dbls(x0))) → SEL(indx(activate(y0), y1), dbls(activate(x0)))
ACTIVATE(n__sel(n__dbl(y0), n__from(x0))) → SEL(dbl(activate(y0)), from(x0))
ACTIVATE(n__indx(n__dbls(x0), y1)) → INDX(dbls(activate(x0)), y1)
The TRS R consists of the following rules:
dbl(0) → 0
dbl(s(X)) → s(n__s(n__dbl(activate(X))))
dbls(nil) → nil
dbls(cons(X, Y)) → cons(n__dbl(activate(X)), n__dbls(activate(Y)))
sel(0, cons(X, Y)) → activate(X)
sel(s(X), cons(Y, Z)) → sel(activate(X), activate(Z))
indx(nil, X) → nil
indx(cons(X, Y), Z) → cons(n__sel(activate(X), activate(Z)), n__indx(activate(Y), activate(Z)))
from(X) → cons(activate(X), n__from(n__s(activate(X))))
s(X) → n__s(X)
dbl(X) → n__dbl(X)
dbls(X) → n__dbls(X)
sel(X1, X2) → n__sel(X1, X2)
indx(X1, X2) → n__indx(X1, X2)
from(X) → n__from(X)
activate(n__s(X)) → s(X)
activate(n__dbl(X)) → dbl(activate(X))
activate(n__dbls(X)) → dbls(activate(X))
activate(n__sel(X1, X2)) → sel(activate(X1), activate(X2))
activate(n__indx(X1, X2)) → indx(activate(X1), X2)
activate(n__from(X)) → from(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule SEL(s(n__indx(y0, y1)), cons(y2, n__s(x0))) → SEL(indx(activate(y0), y1), s(x0)) at position [1] we obtained the following new rules:
SEL(s(n__indx(y0, y1)), cons(y2, n__s(x0))) → SEL(indx(activate(y0), y1), n__s(x0))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE(n__dbl(n__dbl(x0))) → DBL(dbl(activate(x0)))
SEL(s(X), cons(Y, Z)) → ACTIVATE(Z)
ACTIVATE(n__sel(n__s(y0), n__dbl(x0))) → SEL(s(y0), dbl(activate(x0)))
ACTIVATE(n__sel(n__s(y0), n__indx(x0, x1))) → SEL(s(y0), indx(activate(x0), x1))
SEL(s(n__sel(y0, y1)), cons(y2, n__dbl(x0))) → SEL(sel(activate(y0), activate(y1)), dbl(activate(x0)))
ACTIVATE(n__dbl(X)) → ACTIVATE(X)
SEL(s(n__indx(y0, y1)), cons(y2, n__sel(x0, x1))) → SEL(indx(activate(y0), y1), sel(activate(x0), activate(x1)))
SEL(s(y0), cons(y1, n__from(x0))) → SEL(y0, from(x0))
ACTIVATE(n__sel(n__s(y0), x0)) → SEL(s(y0), x0)
ACTIVATE(n__from(X)) → FROM(X)
SEL(s(n__sel(y0, y1)), cons(y2, n__sel(x0, x1))) → SEL(sel(activate(y0), activate(y1)), sel(activate(x0), activate(x1)))
SEL(s(n__dbls(y0)), cons(y1, n__sel(x0, x1))) → SEL(dbls(activate(y0)), sel(activate(x0), activate(x1)))
SEL(s(y0), cons(y1, n__indx(x0, x1))) → SEL(y0, indx(activate(x0), x1))
ACTIVATE(n__dbls(x0)) → DBLS(x0)
ACTIVATE(n__sel(n__s(y0), n__s(x0))) → SEL(s(y0), s(x0))
ACTIVATE(n__sel(n__indx(y0, y1), n__indx(x0, x1))) → SEL(indx(activate(y0), y1), indx(activate(x0), x1))
SEL(s(n__sel(y0, y1)), cons(y2, n__dbls(x0))) → SEL(sel(activate(y0), activate(y1)), dbls(activate(x0)))
SEL(s(y0), cons(y1, n__s(x0))) → SEL(y0, s(x0))
ACTIVATE(n__dbl(n__dbls(x0))) → DBL(dbls(activate(x0)))
INDX(cons(X, Y), Z) → ACTIVATE(X)
SEL(s(n__indx(y0, y1)), cons(y2, n__s(x0))) → SEL(indx(activate(y0), y1), n__s(x0))
ACTIVATE(n__dbl(x0)) → DBL(x0)
SEL(s(n__dbls(y0)), cons(y1, n__s(x0))) → SEL(dbls(activate(y0)), s(x0))
SEL(s(n__s(y0)), cons(y1, n__sel(x0, x1))) → SEL(s(y0), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__sel(y0, y1), n__dbl(x0))) → SEL(sel(activate(y0), activate(y1)), dbl(activate(x0)))
SEL(s(n__dbls(y0)), cons(y1, n__from(x0))) → SEL(dbls(activate(y0)), from(x0))
ACTIVATE(n__sel(n__dbl(y0), n__sel(x0, x1))) → SEL(dbl(activate(y0)), sel(activate(x0), activate(x1)))
ACTIVATE(n__dbls(n__from(x0))) → DBLS(from(x0))
ACTIVATE(n__sel(X1, X2)) → ACTIVATE(X1)
SEL(s(n__s(y0)), cons(y1, n__dbl(x0))) → SEL(s(y0), dbl(activate(x0)))
ACTIVATE(n__sel(n__s(y0), n__from(x0))) → SEL(s(y0), from(x0))
SEL(s(n__s(y0)), cons(y1, n__indx(x0, x1))) → SEL(s(y0), indx(activate(x0), x1))
SEL(s(n__sel(y0, y1)), cons(y2, n__from(x0))) → SEL(sel(activate(y0), activate(y1)), from(x0))
SEL(s(X), cons(Y, Z)) → ACTIVATE(X)
ACTIVATE(n__sel(n__indx(y0, y1), n__s(x0))) → SEL(indx(activate(y0), y1), s(x0))
DBL(s(X)) → ACTIVATE(X)
SEL(s(n__dbl(y0)), cons(y1, x0)) → SEL(dbl(activate(y0)), x0)
ACTIVATE(n__sel(n__indx(y0, y1), n__sel(x0, x1))) → SEL(indx(activate(y0), y1), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(y0, n__from(x0))) → SEL(y0, from(x0))
ACTIVATE(n__sel(y0, x0)) → SEL(y0, x0)
SEL(s(n__sel(y0, y1)), cons(y2, n__s(x0))) → SEL(sel(activate(y0), activate(y1)), s(x0))
ACTIVATE(n__dbls(n__dbls(x0))) → DBLS(dbls(activate(x0)))
SEL(s(n__dbl(y0)), cons(y1, n__indx(x0, x1))) → SEL(dbl(activate(y0)), indx(activate(x0), x1))
ACTIVATE(n__sel(n__indx(y0, y1), x0)) → SEL(indx(activate(y0), y1), x0)
SEL(s(n__dbls(y0)), cons(y1, n__dbls(x0))) → SEL(dbls(activate(y0)), dbls(activate(x0)))
ACTIVATE(n__dbl(n__s(x0))) → DBL(s(x0))
SEL(s(n__dbl(y0)), cons(y1, n__dbl(x0))) → SEL(dbl(activate(y0)), dbl(activate(x0)))
ACTIVATE(n__sel(y0, n__indx(x0, x1))) → SEL(y0, indx(activate(x0), x1))
ACTIVATE(n__sel(n__indx(y0, y1), n__from(x0))) → SEL(indx(activate(y0), y1), from(x0))
SEL(s(y0), cons(y1, n__dbls(x0))) → SEL(y0, dbls(activate(x0)))
SEL(s(n__sel(y0, y1)), cons(y2, n__indx(x0, x1))) → SEL(sel(activate(y0), activate(y1)), indx(activate(x0), x1))
ACTIVATE(n__sel(n__dbls(y0), n__from(x0))) → SEL(dbls(activate(y0)), from(x0))
ACTIVATE(n__dbl(n__sel(x0, x1))) → DBL(sel(activate(x0), activate(x1)))
SEL(s(n__s(y0)), cons(y1, n__dbls(x0))) → SEL(s(y0), dbls(activate(x0)))
ACTIVATE(n__indx(X1, X2)) → ACTIVATE(X1)
SEL(s(n__indx(y0, y1)), cons(y2, x0)) → SEL(indx(activate(y0), y1), x0)
ACTIVATE(n__indx(n__from(x0), y1)) → INDX(from(x0), y1)
ACTIVATE(n__indx(n__dbl(x0), y1)) → INDX(dbl(activate(x0)), y1)
SEL(s(n__s(y0)), cons(y1, x0)) → SEL(s(y0), x0)
INDX(cons(X, Y), Z) → ACTIVATE(Y)
ACTIVATE(n__sel(n__dbl(y0), n__indx(x0, x1))) → SEL(dbl(activate(y0)), indx(activate(x0), x1))
ACTIVATE(n__indx(n__indx(x0, x1), y1)) → INDX(indx(activate(x0), x1), y1)
ACTIVATE(n__sel(n__s(y0), n__dbls(x0))) → SEL(s(y0), dbls(activate(x0)))
ACTIVATE(n__indx(n__sel(x0, x1), y1)) → INDX(sel(activate(x0), activate(x1)), y1)
INDX(cons(X, Y), Z) → ACTIVATE(Z)
ACTIVATE(n__sel(n__indx(y0, y1), n__dbl(x0))) → SEL(indx(activate(y0), y1), dbl(activate(x0)))
ACTIVATE(n__dbls(X)) → ACTIVATE(X)
SEL(0, cons(X, Y)) → ACTIVATE(X)
ACTIVATE(n__sel(n__dbls(y0), n__dbls(x0))) → SEL(dbls(activate(y0)), dbls(activate(x0)))
ACTIVATE(n__sel(y0, n__dbls(x0))) → SEL(y0, dbls(activate(x0)))
DBLS(cons(X, Y)) → ACTIVATE(Y)
ACTIVATE(n__sel(n__sel(y0, y1), n__s(x0))) → SEL(sel(activate(y0), activate(y1)), s(x0))
SEL(s(n__dbls(y0)), cons(y1, n__dbl(x0))) → SEL(dbls(activate(y0)), dbl(activate(x0)))
SEL(s(n__dbl(y0)), cons(y1, n__dbls(x0))) → SEL(dbl(activate(y0)), dbls(activate(x0)))
ACTIVATE(n__sel(y0, n__s(x0))) → SEL(y0, s(x0))
SEL(s(y0), cons(y1, n__sel(x0, x1))) → SEL(y0, sel(activate(x0), activate(x1)))
SEL(s(n__dbl(y0)), cons(y1, n__from(x0))) → SEL(dbl(activate(y0)), from(x0))
SEL(s(n__sel(y0, y1)), cons(y2, x0)) → SEL(sel(activate(y0), activate(y1)), x0)
SEL(s(y0), cons(y1, n__dbl(x0))) → SEL(y0, dbl(activate(x0)))
ACTIVATE(n__sel(X1, X2)) → ACTIVATE(X2)
SEL(s(n__s(y0)), cons(y1, n__from(x0))) → SEL(s(y0), from(x0))
ACTIVATE(n__sel(n__sel(y0, y1), n__from(x0))) → SEL(sel(activate(y0), activate(y1)), from(x0))
SEL(s(n__dbl(y0)), cons(y1, n__sel(x0, x1))) → SEL(dbl(activate(y0)), sel(activate(x0), activate(x1)))
SEL(s(n__indx(y0, y1)), cons(y2, n__indx(x0, x1))) → SEL(indx(activate(y0), y1), indx(activate(x0), x1))
ACTIVATE(n__sel(n__sel(y0, y1), x0)) → SEL(sel(activate(y0), activate(y1)), x0)
SEL(s(n__indx(y0, y1)), cons(y2, n__from(x0))) → SEL(indx(activate(y0), y1), from(x0))
FROM(X) → ACTIVATE(X)
ACTIVATE(n__sel(n__dbl(y0), n__s(x0))) → SEL(dbl(activate(y0)), s(x0))
ACTIVATE(n__dbls(n__sel(x0, x1))) → DBLS(sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__dbl(y0), n__dbls(x0))) → SEL(dbl(activate(y0)), dbls(activate(x0)))
SEL(s(n__dbls(y0)), cons(y1, n__indx(x0, x1))) → SEL(dbls(activate(y0)), indx(activate(x0), x1))
ACTIVATE(n__sel(n__dbls(y0), n__dbl(x0))) → SEL(dbls(activate(y0)), dbl(activate(x0)))
ACTIVATE(n__sel(n__dbl(y0), x0)) → SEL(dbl(activate(y0)), x0)
ACTIVATE(n__dbl(n__indx(x0, x1))) → DBL(indx(activate(x0), x1))
DBLS(cons(X, Y)) → ACTIVATE(X)
ACTIVATE(n__sel(n__dbls(y0), n__indx(x0, x1))) → SEL(dbls(activate(y0)), indx(activate(x0), x1))
ACTIVATE(n__sel(n__sel(y0, y1), n__sel(x0, x1))) → SEL(sel(activate(y0), activate(y1)), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(y0, n__sel(x0, x1))) → SEL(y0, sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__dbls(y0), n__s(x0))) → SEL(dbls(activate(y0)), s(x0))
ACTIVATE(n__sel(y0, n__dbl(x0))) → SEL(y0, dbl(activate(x0)))
ACTIVATE(n__dbls(n__dbl(x0))) → DBLS(dbl(activate(x0)))
ACTIVATE(n__dbls(n__indx(x0, x1))) → DBLS(indx(activate(x0), x1))
ACTIVATE(n__sel(n__sel(y0, y1), n__indx(x0, x1))) → SEL(sel(activate(y0), activate(y1)), indx(activate(x0), x1))
SEL(s(y0), cons(y1, x0)) → SEL(y0, x0)
ACTIVATE(n__sel(n__dbls(y0), x0)) → SEL(dbls(activate(y0)), x0)
ACTIVATE(n__sel(n__s(y0), n__sel(x0, x1))) → SEL(s(y0), sel(activate(x0), activate(x1)))
SEL(s(n__dbls(y0)), cons(y1, x0)) → SEL(dbls(activate(y0)), x0)
SEL(s(n__indx(y0, y1)), cons(y2, n__dbls(x0))) → SEL(indx(activate(y0), y1), dbls(activate(x0)))
ACTIVATE(n__indx(x0, y1)) → INDX(x0, y1)
SEL(s(n__indx(y0, y1)), cons(y2, n__dbl(x0))) → SEL(indx(activate(y0), y1), dbl(activate(x0)))
ACTIVATE(n__sel(n__dbl(y0), n__dbl(x0))) → SEL(dbl(activate(y0)), dbl(activate(x0)))
ACTIVATE(n__sel(n__sel(y0, y1), n__dbls(x0))) → SEL(sel(activate(y0), activate(y1)), dbls(activate(x0)))
ACTIVATE(n__sel(n__dbls(y0), n__sel(x0, x1))) → SEL(dbls(activate(y0)), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__indx(y0, y1), n__dbls(x0))) → SEL(indx(activate(y0), y1), dbls(activate(x0)))
ACTIVATE(n__sel(n__dbl(y0), n__from(x0))) → SEL(dbl(activate(y0)), from(x0))
ACTIVATE(n__indx(n__dbls(x0), y1)) → INDX(dbls(activate(x0)), y1)
The TRS R consists of the following rules:
dbl(0) → 0
dbl(s(X)) → s(n__s(n__dbl(activate(X))))
dbls(nil) → nil
dbls(cons(X, Y)) → cons(n__dbl(activate(X)), n__dbls(activate(Y)))
sel(0, cons(X, Y)) → activate(X)
sel(s(X), cons(Y, Z)) → sel(activate(X), activate(Z))
indx(nil, X) → nil
indx(cons(X, Y), Z) → cons(n__sel(activate(X), activate(Z)), n__indx(activate(Y), activate(Z)))
from(X) → cons(activate(X), n__from(n__s(activate(X))))
s(X) → n__s(X)
dbl(X) → n__dbl(X)
dbls(X) → n__dbls(X)
sel(X1, X2) → n__sel(X1, X2)
indx(X1, X2) → n__indx(X1, X2)
from(X) → n__from(X)
activate(n__s(X)) → s(X)
activate(n__dbl(X)) → dbl(activate(X))
activate(n__dbls(X)) → dbls(activate(X))
activate(n__sel(X1, X2)) → sel(activate(X1), activate(X2))
activate(n__indx(X1, X2)) → indx(activate(X1), X2)
activate(n__from(X)) → from(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE(n__sel(n__s(y0), n__indx(x0, x1))) → SEL(s(y0), indx(activate(x0), x1))
ACTIVATE(n__sel(n__s(y0), n__dbl(x0))) → SEL(s(y0), dbl(activate(x0)))
SEL(s(X), cons(Y, Z)) → ACTIVATE(Z)
ACTIVATE(n__dbl(n__dbl(x0))) → DBL(dbl(activate(x0)))
SEL(s(n__sel(y0, y1)), cons(y2, n__dbl(x0))) → SEL(sel(activate(y0), activate(y1)), dbl(activate(x0)))
ACTIVATE(n__dbl(X)) → ACTIVATE(X)
SEL(s(n__indx(y0, y1)), cons(y2, n__sel(x0, x1))) → SEL(indx(activate(y0), y1), sel(activate(x0), activate(x1)))
SEL(s(y0), cons(y1, n__from(x0))) → SEL(y0, from(x0))
ACTIVATE(n__sel(n__s(y0), x0)) → SEL(s(y0), x0)
ACTIVATE(n__from(X)) → FROM(X)
SEL(s(n__sel(y0, y1)), cons(y2, n__sel(x0, x1))) → SEL(sel(activate(y0), activate(y1)), sel(activate(x0), activate(x1)))
SEL(s(n__dbls(y0)), cons(y1, n__sel(x0, x1))) → SEL(dbls(activate(y0)), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__s(y0), n__s(x0))) → SEL(s(y0), s(x0))
ACTIVATE(n__dbls(x0)) → DBLS(x0)
SEL(s(y0), cons(y1, n__indx(x0, x1))) → SEL(y0, indx(activate(x0), x1))
SEL(s(n__sel(y0, y1)), cons(y2, n__dbls(x0))) → SEL(sel(activate(y0), activate(y1)), dbls(activate(x0)))
ACTIVATE(n__sel(n__indx(y0, y1), n__indx(x0, x1))) → SEL(indx(activate(y0), y1), indx(activate(x0), x1))
SEL(s(y0), cons(y1, n__s(x0))) → SEL(y0, s(x0))
ACTIVATE(n__dbl(n__dbls(x0))) → DBL(dbls(activate(x0)))
INDX(cons(X, Y), Z) → ACTIVATE(X)
ACTIVATE(n__dbl(x0)) → DBL(x0)
SEL(s(n__dbls(y0)), cons(y1, n__s(x0))) → SEL(dbls(activate(y0)), s(x0))
SEL(s(n__s(y0)), cons(y1, n__sel(x0, x1))) → SEL(s(y0), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__dbl(y0), n__sel(x0, x1))) → SEL(dbl(activate(y0)), sel(activate(x0), activate(x1)))
SEL(s(n__dbls(y0)), cons(y1, n__from(x0))) → SEL(dbls(activate(y0)), from(x0))
ACTIVATE(n__sel(n__sel(y0, y1), n__dbl(x0))) → SEL(sel(activate(y0), activate(y1)), dbl(activate(x0)))
SEL(s(n__s(y0)), cons(y1, n__dbl(x0))) → SEL(s(y0), dbl(activate(x0)))
ACTIVATE(n__sel(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__dbls(n__from(x0))) → DBLS(from(x0))
ACTIVATE(n__sel(n__s(y0), n__from(x0))) → SEL(s(y0), from(x0))
SEL(s(n__s(y0)), cons(y1, n__indx(x0, x1))) → SEL(s(y0), indx(activate(x0), x1))
SEL(s(n__sel(y0, y1)), cons(y2, n__from(x0))) → SEL(sel(activate(y0), activate(y1)), from(x0))
SEL(s(X), cons(Y, Z)) → ACTIVATE(X)
SEL(s(n__dbl(y0)), cons(y1, x0)) → SEL(dbl(activate(y0)), x0)
DBL(s(X)) → ACTIVATE(X)
ACTIVATE(n__sel(n__indx(y0, y1), n__s(x0))) → SEL(indx(activate(y0), y1), s(x0))
ACTIVATE(n__sel(n__indx(y0, y1), n__sel(x0, x1))) → SEL(indx(activate(y0), y1), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(y0, n__from(x0))) → SEL(y0, from(x0))
ACTIVATE(n__sel(y0, x0)) → SEL(y0, x0)
SEL(s(n__sel(y0, y1)), cons(y2, n__s(x0))) → SEL(sel(activate(y0), activate(y1)), s(x0))
SEL(s(n__dbl(y0)), cons(y1, n__indx(x0, x1))) → SEL(dbl(activate(y0)), indx(activate(x0), x1))
ACTIVATE(n__dbls(n__dbls(x0))) → DBLS(dbls(activate(x0)))
ACTIVATE(n__sel(n__indx(y0, y1), x0)) → SEL(indx(activate(y0), y1), x0)
SEL(s(n__dbls(y0)), cons(y1, n__dbls(x0))) → SEL(dbls(activate(y0)), dbls(activate(x0)))
ACTIVATE(n__dbl(n__s(x0))) → DBL(s(x0))
ACTIVATE(n__sel(y0, n__indx(x0, x1))) → SEL(y0, indx(activate(x0), x1))
SEL(s(n__dbl(y0)), cons(y1, n__dbl(x0))) → SEL(dbl(activate(y0)), dbl(activate(x0)))
ACTIVATE(n__sel(n__indx(y0, y1), n__from(x0))) → SEL(indx(activate(y0), y1), from(x0))
SEL(s(y0), cons(y1, n__dbls(x0))) → SEL(y0, dbls(activate(x0)))
ACTIVATE(n__sel(n__dbls(y0), n__from(x0))) → SEL(dbls(activate(y0)), from(x0))
SEL(s(n__sel(y0, y1)), cons(y2, n__indx(x0, x1))) → SEL(sel(activate(y0), activate(y1)), indx(activate(x0), x1))
ACTIVATE(n__dbl(n__sel(x0, x1))) → DBL(sel(activate(x0), activate(x1)))
SEL(s(n__s(y0)), cons(y1, n__dbls(x0))) → SEL(s(y0), dbls(activate(x0)))
ACTIVATE(n__indx(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__indx(n__from(x0), y1)) → INDX(from(x0), y1)
SEL(s(n__indx(y0, y1)), cons(y2, x0)) → SEL(indx(activate(y0), y1), x0)
ACTIVATE(n__indx(n__dbl(x0), y1)) → INDX(dbl(activate(x0)), y1)
SEL(s(n__s(y0)), cons(y1, x0)) → SEL(s(y0), x0)
INDX(cons(X, Y), Z) → ACTIVATE(Y)
ACTIVATE(n__sel(n__dbl(y0), n__indx(x0, x1))) → SEL(dbl(activate(y0)), indx(activate(x0), x1))
ACTIVATE(n__indx(n__indx(x0, x1), y1)) → INDX(indx(activate(x0), x1), y1)
ACTIVATE(n__sel(n__s(y0), n__dbls(x0))) → SEL(s(y0), dbls(activate(x0)))
ACTIVATE(n__indx(n__sel(x0, x1), y1)) → INDX(sel(activate(x0), activate(x1)), y1)
INDX(cons(X, Y), Z) → ACTIVATE(Z)
ACTIVATE(n__sel(n__indx(y0, y1), n__dbl(x0))) → SEL(indx(activate(y0), y1), dbl(activate(x0)))
ACTIVATE(n__dbls(X)) → ACTIVATE(X)
SEL(0, cons(X, Y)) → ACTIVATE(X)
ACTIVATE(n__sel(n__dbls(y0), n__dbls(x0))) → SEL(dbls(activate(y0)), dbls(activate(x0)))
ACTIVATE(n__sel(y0, n__dbls(x0))) → SEL(y0, dbls(activate(x0)))
DBLS(cons(X, Y)) → ACTIVATE(Y)
SEL(s(n__dbl(y0)), cons(y1, n__dbls(x0))) → SEL(dbl(activate(y0)), dbls(activate(x0)))
SEL(s(n__dbls(y0)), cons(y1, n__dbl(x0))) → SEL(dbls(activate(y0)), dbl(activate(x0)))
ACTIVATE(n__sel(n__sel(y0, y1), n__s(x0))) → SEL(sel(activate(y0), activate(y1)), s(x0))
ACTIVATE(n__sel(y0, n__s(x0))) → SEL(y0, s(x0))
SEL(s(y0), cons(y1, n__sel(x0, x1))) → SEL(y0, sel(activate(x0), activate(x1)))
SEL(s(n__dbl(y0)), cons(y1, n__from(x0))) → SEL(dbl(activate(y0)), from(x0))
SEL(s(n__sel(y0, y1)), cons(y2, x0)) → SEL(sel(activate(y0), activate(y1)), x0)
SEL(s(n__s(y0)), cons(y1, n__from(x0))) → SEL(s(y0), from(x0))
ACTIVATE(n__sel(X1, X2)) → ACTIVATE(X2)
SEL(s(y0), cons(y1, n__dbl(x0))) → SEL(y0, dbl(activate(x0)))
ACTIVATE(n__sel(n__sel(y0, y1), n__from(x0))) → SEL(sel(activate(y0), activate(y1)), from(x0))
SEL(s(n__dbl(y0)), cons(y1, n__sel(x0, x1))) → SEL(dbl(activate(y0)), sel(activate(x0), activate(x1)))
SEL(s(n__indx(y0, y1)), cons(y2, n__indx(x0, x1))) → SEL(indx(activate(y0), y1), indx(activate(x0), x1))
SEL(s(n__indx(y0, y1)), cons(y2, n__from(x0))) → SEL(indx(activate(y0), y1), from(x0))
ACTIVATE(n__sel(n__sel(y0, y1), x0)) → SEL(sel(activate(y0), activate(y1)), x0)
FROM(X) → ACTIVATE(X)
ACTIVATE(n__dbls(n__sel(x0, x1))) → DBLS(sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__dbl(y0), n__s(x0))) → SEL(dbl(activate(y0)), s(x0))
ACTIVATE(n__sel(n__dbls(y0), n__dbl(x0))) → SEL(dbls(activate(y0)), dbl(activate(x0)))
SEL(s(n__dbls(y0)), cons(y1, n__indx(x0, x1))) → SEL(dbls(activate(y0)), indx(activate(x0), x1))
ACTIVATE(n__sel(n__dbl(y0), n__dbls(x0))) → SEL(dbl(activate(y0)), dbls(activate(x0)))
ACTIVATE(n__sel(n__dbl(y0), x0)) → SEL(dbl(activate(y0)), x0)
ACTIVATE(n__dbl(n__indx(x0, x1))) → DBL(indx(activate(x0), x1))
DBLS(cons(X, Y)) → ACTIVATE(X)
ACTIVATE(n__sel(n__dbls(y0), n__indx(x0, x1))) → SEL(dbls(activate(y0)), indx(activate(x0), x1))
ACTIVATE(n__sel(n__sel(y0, y1), n__sel(x0, x1))) → SEL(sel(activate(y0), activate(y1)), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(y0, n__sel(x0, x1))) → SEL(y0, sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__dbls(y0), n__s(x0))) → SEL(dbls(activate(y0)), s(x0))
ACTIVATE(n__sel(y0, n__dbl(x0))) → SEL(y0, dbl(activate(x0)))
ACTIVATE(n__dbls(n__dbl(x0))) → DBLS(dbl(activate(x0)))
ACTIVATE(n__dbls(n__indx(x0, x1))) → DBLS(indx(activate(x0), x1))
SEL(s(y0), cons(y1, x0)) → SEL(y0, x0)
ACTIVATE(n__sel(n__sel(y0, y1), n__indx(x0, x1))) → SEL(sel(activate(y0), activate(y1)), indx(activate(x0), x1))
ACTIVATE(n__sel(n__dbls(y0), x0)) → SEL(dbls(activate(y0)), x0)
ACTIVATE(n__sel(n__s(y0), n__sel(x0, x1))) → SEL(s(y0), sel(activate(x0), activate(x1)))
SEL(s(n__dbls(y0)), cons(y1, x0)) → SEL(dbls(activate(y0)), x0)
SEL(s(n__indx(y0, y1)), cons(y2, n__dbls(x0))) → SEL(indx(activate(y0), y1), dbls(activate(x0)))
ACTIVATE(n__indx(x0, y1)) → INDX(x0, y1)
SEL(s(n__indx(y0, y1)), cons(y2, n__dbl(x0))) → SEL(indx(activate(y0), y1), dbl(activate(x0)))
ACTIVATE(n__sel(n__dbl(y0), n__dbl(x0))) → SEL(dbl(activate(y0)), dbl(activate(x0)))
ACTIVATE(n__sel(n__dbls(y0), n__sel(x0, x1))) → SEL(dbls(activate(y0)), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__sel(y0, y1), n__dbls(x0))) → SEL(sel(activate(y0), activate(y1)), dbls(activate(x0)))
ACTIVATE(n__sel(n__indx(y0, y1), n__dbls(x0))) → SEL(indx(activate(y0), y1), dbls(activate(x0)))
ACTIVATE(n__sel(n__dbl(y0), n__from(x0))) → SEL(dbl(activate(y0)), from(x0))
ACTIVATE(n__indx(n__dbls(x0), y1)) → INDX(dbls(activate(x0)), y1)
The TRS R consists of the following rules:
dbl(0) → 0
dbl(s(X)) → s(n__s(n__dbl(activate(X))))
dbls(nil) → nil
dbls(cons(X, Y)) → cons(n__dbl(activate(X)), n__dbls(activate(Y)))
sel(0, cons(X, Y)) → activate(X)
sel(s(X), cons(Y, Z)) → sel(activate(X), activate(Z))
indx(nil, X) → nil
indx(cons(X, Y), Z) → cons(n__sel(activate(X), activate(Z)), n__indx(activate(Y), activate(Z)))
from(X) → cons(activate(X), n__from(n__s(activate(X))))
s(X) → n__s(X)
dbl(X) → n__dbl(X)
dbls(X) → n__dbls(X)
sel(X1, X2) → n__sel(X1, X2)
indx(X1, X2) → n__indx(X1, X2)
from(X) → n__from(X)
activate(n__s(X)) → s(X)
activate(n__dbl(X)) → dbl(activate(X))
activate(n__dbls(X)) → dbls(activate(X))
activate(n__sel(X1, X2)) → sel(activate(X1), activate(X2))
activate(n__indx(X1, X2)) → indx(activate(X1), X2)
activate(n__from(X)) → from(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule SEL(s(n__sel(y0, y1)), cons(y2, n__s(x0))) → SEL(sel(activate(y0), activate(y1)), s(x0)) at position [1] we obtained the following new rules:
SEL(s(n__sel(y0, y1)), cons(y2, n__s(x0))) → SEL(sel(activate(y0), activate(y1)), n__s(x0))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE(n__dbl(n__dbl(x0))) → DBL(dbl(activate(x0)))
SEL(s(X), cons(Y, Z)) → ACTIVATE(Z)
ACTIVATE(n__sel(n__s(y0), n__dbl(x0))) → SEL(s(y0), dbl(activate(x0)))
ACTIVATE(n__sel(n__s(y0), n__indx(x0, x1))) → SEL(s(y0), indx(activate(x0), x1))
SEL(s(n__sel(y0, y1)), cons(y2, n__dbl(x0))) → SEL(sel(activate(y0), activate(y1)), dbl(activate(x0)))
ACTIVATE(n__dbl(X)) → ACTIVATE(X)
SEL(s(n__indx(y0, y1)), cons(y2, n__sel(x0, x1))) → SEL(indx(activate(y0), y1), sel(activate(x0), activate(x1)))
SEL(s(y0), cons(y1, n__from(x0))) → SEL(y0, from(x0))
ACTIVATE(n__sel(n__s(y0), x0)) → SEL(s(y0), x0)
ACTIVATE(n__from(X)) → FROM(X)
SEL(s(n__sel(y0, y1)), cons(y2, n__sel(x0, x1))) → SEL(sel(activate(y0), activate(y1)), sel(activate(x0), activate(x1)))
SEL(s(n__dbls(y0)), cons(y1, n__sel(x0, x1))) → SEL(dbls(activate(y0)), sel(activate(x0), activate(x1)))
SEL(s(y0), cons(y1, n__indx(x0, x1))) → SEL(y0, indx(activate(x0), x1))
ACTIVATE(n__dbls(x0)) → DBLS(x0)
ACTIVATE(n__sel(n__s(y0), n__s(x0))) → SEL(s(y0), s(x0))
ACTIVATE(n__sel(n__indx(y0, y1), n__indx(x0, x1))) → SEL(indx(activate(y0), y1), indx(activate(x0), x1))
SEL(s(n__sel(y0, y1)), cons(y2, n__dbls(x0))) → SEL(sel(activate(y0), activate(y1)), dbls(activate(x0)))
SEL(s(y0), cons(y1, n__s(x0))) → SEL(y0, s(x0))
ACTIVATE(n__dbl(n__dbls(x0))) → DBL(dbls(activate(x0)))
INDX(cons(X, Y), Z) → ACTIVATE(X)
ACTIVATE(n__dbl(x0)) → DBL(x0)
SEL(s(n__dbls(y0)), cons(y1, n__s(x0))) → SEL(dbls(activate(y0)), s(x0))
SEL(s(n__s(y0)), cons(y1, n__sel(x0, x1))) → SEL(s(y0), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__sel(y0, y1), n__dbl(x0))) → SEL(sel(activate(y0), activate(y1)), dbl(activate(x0)))
SEL(s(n__dbls(y0)), cons(y1, n__from(x0))) → SEL(dbls(activate(y0)), from(x0))
ACTIVATE(n__sel(n__dbl(y0), n__sel(x0, x1))) → SEL(dbl(activate(y0)), sel(activate(x0), activate(x1)))
ACTIVATE(n__dbls(n__from(x0))) → DBLS(from(x0))
ACTIVATE(n__sel(X1, X2)) → ACTIVATE(X1)
SEL(s(n__s(y0)), cons(y1, n__dbl(x0))) → SEL(s(y0), dbl(activate(x0)))
ACTIVATE(n__sel(n__s(y0), n__from(x0))) → SEL(s(y0), from(x0))
SEL(s(n__s(y0)), cons(y1, n__indx(x0, x1))) → SEL(s(y0), indx(activate(x0), x1))
SEL(s(n__sel(y0, y1)), cons(y2, n__from(x0))) → SEL(sel(activate(y0), activate(y1)), from(x0))
SEL(s(X), cons(Y, Z)) → ACTIVATE(X)
ACTIVATE(n__sel(n__indx(y0, y1), n__s(x0))) → SEL(indx(activate(y0), y1), s(x0))
DBL(s(X)) → ACTIVATE(X)
SEL(s(n__dbl(y0)), cons(y1, x0)) → SEL(dbl(activate(y0)), x0)
ACTIVATE(n__sel(n__indx(y0, y1), n__sel(x0, x1))) → SEL(indx(activate(y0), y1), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(y0, n__from(x0))) → SEL(y0, from(x0))
ACTIVATE(n__sel(y0, x0)) → SEL(y0, x0)
ACTIVATE(n__dbls(n__dbls(x0))) → DBLS(dbls(activate(x0)))
SEL(s(n__dbl(y0)), cons(y1, n__indx(x0, x1))) → SEL(dbl(activate(y0)), indx(activate(x0), x1))
ACTIVATE(n__sel(n__indx(y0, y1), x0)) → SEL(indx(activate(y0), y1), x0)
SEL(s(n__dbls(y0)), cons(y1, n__dbls(x0))) → SEL(dbls(activate(y0)), dbls(activate(x0)))
ACTIVATE(n__dbl(n__s(x0))) → DBL(s(x0))
SEL(s(n__dbl(y0)), cons(y1, n__dbl(x0))) → SEL(dbl(activate(y0)), dbl(activate(x0)))
ACTIVATE(n__sel(y0, n__indx(x0, x1))) → SEL(y0, indx(activate(x0), x1))
ACTIVATE(n__sel(n__indx(y0, y1), n__from(x0))) → SEL(indx(activate(y0), y1), from(x0))
SEL(s(y0), cons(y1, n__dbls(x0))) → SEL(y0, dbls(activate(x0)))
SEL(s(n__sel(y0, y1)), cons(y2, n__indx(x0, x1))) → SEL(sel(activate(y0), activate(y1)), indx(activate(x0), x1))
ACTIVATE(n__sel(n__dbls(y0), n__from(x0))) → SEL(dbls(activate(y0)), from(x0))
ACTIVATE(n__dbl(n__sel(x0, x1))) → DBL(sel(activate(x0), activate(x1)))
SEL(s(n__sel(y0, y1)), cons(y2, n__s(x0))) → SEL(sel(activate(y0), activate(y1)), n__s(x0))
SEL(s(n__s(y0)), cons(y1, n__dbls(x0))) → SEL(s(y0), dbls(activate(x0)))
ACTIVATE(n__indx(X1, X2)) → ACTIVATE(X1)
SEL(s(n__indx(y0, y1)), cons(y2, x0)) → SEL(indx(activate(y0), y1), x0)
ACTIVATE(n__indx(n__from(x0), y1)) → INDX(from(x0), y1)
ACTIVATE(n__indx(n__dbl(x0), y1)) → INDX(dbl(activate(x0)), y1)
SEL(s(n__s(y0)), cons(y1, x0)) → SEL(s(y0), x0)
INDX(cons(X, Y), Z) → ACTIVATE(Y)
ACTIVATE(n__sel(n__dbl(y0), n__indx(x0, x1))) → SEL(dbl(activate(y0)), indx(activate(x0), x1))
ACTIVATE(n__indx(n__indx(x0, x1), y1)) → INDX(indx(activate(x0), x1), y1)
ACTIVATE(n__sel(n__s(y0), n__dbls(x0))) → SEL(s(y0), dbls(activate(x0)))
ACTIVATE(n__indx(n__sel(x0, x1), y1)) → INDX(sel(activate(x0), activate(x1)), y1)
INDX(cons(X, Y), Z) → ACTIVATE(Z)
ACTIVATE(n__sel(n__indx(y0, y1), n__dbl(x0))) → SEL(indx(activate(y0), y1), dbl(activate(x0)))
ACTIVATE(n__dbls(X)) → ACTIVATE(X)
SEL(0, cons(X, Y)) → ACTIVATE(X)
ACTIVATE(n__sel(n__dbls(y0), n__dbls(x0))) → SEL(dbls(activate(y0)), dbls(activate(x0)))
ACTIVATE(n__sel(y0, n__dbls(x0))) → SEL(y0, dbls(activate(x0)))
DBLS(cons(X, Y)) → ACTIVATE(Y)
ACTIVATE(n__sel(n__sel(y0, y1), n__s(x0))) → SEL(sel(activate(y0), activate(y1)), s(x0))
SEL(s(n__dbls(y0)), cons(y1, n__dbl(x0))) → SEL(dbls(activate(y0)), dbl(activate(x0)))
SEL(s(n__dbl(y0)), cons(y1, n__dbls(x0))) → SEL(dbl(activate(y0)), dbls(activate(x0)))
ACTIVATE(n__sel(y0, n__s(x0))) → SEL(y0, s(x0))
SEL(s(y0), cons(y1, n__sel(x0, x1))) → SEL(y0, sel(activate(x0), activate(x1)))
SEL(s(n__dbl(y0)), cons(y1, n__from(x0))) → SEL(dbl(activate(y0)), from(x0))
SEL(s(n__sel(y0, y1)), cons(y2, x0)) → SEL(sel(activate(y0), activate(y1)), x0)
SEL(s(y0), cons(y1, n__dbl(x0))) → SEL(y0, dbl(activate(x0)))
ACTIVATE(n__sel(X1, X2)) → ACTIVATE(X2)
SEL(s(n__s(y0)), cons(y1, n__from(x0))) → SEL(s(y0), from(x0))
ACTIVATE(n__sel(n__sel(y0, y1), n__from(x0))) → SEL(sel(activate(y0), activate(y1)), from(x0))
SEL(s(n__dbl(y0)), cons(y1, n__sel(x0, x1))) → SEL(dbl(activate(y0)), sel(activate(x0), activate(x1)))
SEL(s(n__indx(y0, y1)), cons(y2, n__indx(x0, x1))) → SEL(indx(activate(y0), y1), indx(activate(x0), x1))
ACTIVATE(n__sel(n__sel(y0, y1), x0)) → SEL(sel(activate(y0), activate(y1)), x0)
SEL(s(n__indx(y0, y1)), cons(y2, n__from(x0))) → SEL(indx(activate(y0), y1), from(x0))
FROM(X) → ACTIVATE(X)
ACTIVATE(n__sel(n__dbl(y0), n__s(x0))) → SEL(dbl(activate(y0)), s(x0))
ACTIVATE(n__dbls(n__sel(x0, x1))) → DBLS(sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__dbl(y0), n__dbls(x0))) → SEL(dbl(activate(y0)), dbls(activate(x0)))
SEL(s(n__dbls(y0)), cons(y1, n__indx(x0, x1))) → SEL(dbls(activate(y0)), indx(activate(x0), x1))
ACTIVATE(n__sel(n__dbls(y0), n__dbl(x0))) → SEL(dbls(activate(y0)), dbl(activate(x0)))
ACTIVATE(n__sel(n__dbl(y0), x0)) → SEL(dbl(activate(y0)), x0)
ACTIVATE(n__dbl(n__indx(x0, x1))) → DBL(indx(activate(x0), x1))
DBLS(cons(X, Y)) → ACTIVATE(X)
ACTIVATE(n__sel(n__dbls(y0), n__indx(x0, x1))) → SEL(dbls(activate(y0)), indx(activate(x0), x1))
ACTIVATE(n__sel(n__sel(y0, y1), n__sel(x0, x1))) → SEL(sel(activate(y0), activate(y1)), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(y0, n__sel(x0, x1))) → SEL(y0, sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__dbls(y0), n__s(x0))) → SEL(dbls(activate(y0)), s(x0))
ACTIVATE(n__sel(y0, n__dbl(x0))) → SEL(y0, dbl(activate(x0)))
ACTIVATE(n__dbls(n__dbl(x0))) → DBLS(dbl(activate(x0)))
ACTIVATE(n__dbls(n__indx(x0, x1))) → DBLS(indx(activate(x0), x1))
ACTIVATE(n__sel(n__sel(y0, y1), n__indx(x0, x1))) → SEL(sel(activate(y0), activate(y1)), indx(activate(x0), x1))
SEL(s(y0), cons(y1, x0)) → SEL(y0, x0)
ACTIVATE(n__sel(n__dbls(y0), x0)) → SEL(dbls(activate(y0)), x0)
ACTIVATE(n__sel(n__s(y0), n__sel(x0, x1))) → SEL(s(y0), sel(activate(x0), activate(x1)))
SEL(s(n__dbls(y0)), cons(y1, x0)) → SEL(dbls(activate(y0)), x0)
SEL(s(n__indx(y0, y1)), cons(y2, n__dbls(x0))) → SEL(indx(activate(y0), y1), dbls(activate(x0)))
ACTIVATE(n__indx(x0, y1)) → INDX(x0, y1)
SEL(s(n__indx(y0, y1)), cons(y2, n__dbl(x0))) → SEL(indx(activate(y0), y1), dbl(activate(x0)))
ACTIVATE(n__sel(n__dbl(y0), n__dbl(x0))) → SEL(dbl(activate(y0)), dbl(activate(x0)))
ACTIVATE(n__sel(n__sel(y0, y1), n__dbls(x0))) → SEL(sel(activate(y0), activate(y1)), dbls(activate(x0)))
ACTIVATE(n__sel(n__dbls(y0), n__sel(x0, x1))) → SEL(dbls(activate(y0)), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__indx(y0, y1), n__dbls(x0))) → SEL(indx(activate(y0), y1), dbls(activate(x0)))
ACTIVATE(n__sel(n__dbl(y0), n__from(x0))) → SEL(dbl(activate(y0)), from(x0))
ACTIVATE(n__indx(n__dbls(x0), y1)) → INDX(dbls(activate(x0)), y1)
The TRS R consists of the following rules:
dbl(0) → 0
dbl(s(X)) → s(n__s(n__dbl(activate(X))))
dbls(nil) → nil
dbls(cons(X, Y)) → cons(n__dbl(activate(X)), n__dbls(activate(Y)))
sel(0, cons(X, Y)) → activate(X)
sel(s(X), cons(Y, Z)) → sel(activate(X), activate(Z))
indx(nil, X) → nil
indx(cons(X, Y), Z) → cons(n__sel(activate(X), activate(Z)), n__indx(activate(Y), activate(Z)))
from(X) → cons(activate(X), n__from(n__s(activate(X))))
s(X) → n__s(X)
dbl(X) → n__dbl(X)
dbls(X) → n__dbls(X)
sel(X1, X2) → n__sel(X1, X2)
indx(X1, X2) → n__indx(X1, X2)
from(X) → n__from(X)
activate(n__s(X)) → s(X)
activate(n__dbl(X)) → dbl(activate(X))
activate(n__dbls(X)) → dbls(activate(X))
activate(n__sel(X1, X2)) → sel(activate(X1), activate(X2))
activate(n__indx(X1, X2)) → indx(activate(X1), X2)
activate(n__from(X)) → from(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE(n__sel(n__s(y0), n__indx(x0, x1))) → SEL(s(y0), indx(activate(x0), x1))
ACTIVATE(n__sel(n__s(y0), n__dbl(x0))) → SEL(s(y0), dbl(activate(x0)))
SEL(s(X), cons(Y, Z)) → ACTIVATE(Z)
ACTIVATE(n__dbl(n__dbl(x0))) → DBL(dbl(activate(x0)))
SEL(s(n__sel(y0, y1)), cons(y2, n__dbl(x0))) → SEL(sel(activate(y0), activate(y1)), dbl(activate(x0)))
ACTIVATE(n__dbl(X)) → ACTIVATE(X)
SEL(s(n__indx(y0, y1)), cons(y2, n__sel(x0, x1))) → SEL(indx(activate(y0), y1), sel(activate(x0), activate(x1)))
SEL(s(y0), cons(y1, n__from(x0))) → SEL(y0, from(x0))
ACTIVATE(n__sel(n__s(y0), x0)) → SEL(s(y0), x0)
ACTIVATE(n__from(X)) → FROM(X)
SEL(s(n__sel(y0, y1)), cons(y2, n__sel(x0, x1))) → SEL(sel(activate(y0), activate(y1)), sel(activate(x0), activate(x1)))
SEL(s(n__dbls(y0)), cons(y1, n__sel(x0, x1))) → SEL(dbls(activate(y0)), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__s(y0), n__s(x0))) → SEL(s(y0), s(x0))
ACTIVATE(n__dbls(x0)) → DBLS(x0)
SEL(s(y0), cons(y1, n__indx(x0, x1))) → SEL(y0, indx(activate(x0), x1))
SEL(s(n__sel(y0, y1)), cons(y2, n__dbls(x0))) → SEL(sel(activate(y0), activate(y1)), dbls(activate(x0)))
ACTIVATE(n__sel(n__indx(y0, y1), n__indx(x0, x1))) → SEL(indx(activate(y0), y1), indx(activate(x0), x1))
SEL(s(y0), cons(y1, n__s(x0))) → SEL(y0, s(x0))
ACTIVATE(n__dbl(n__dbls(x0))) → DBL(dbls(activate(x0)))
INDX(cons(X, Y), Z) → ACTIVATE(X)
ACTIVATE(n__dbl(x0)) → DBL(x0)
SEL(s(n__dbls(y0)), cons(y1, n__s(x0))) → SEL(dbls(activate(y0)), s(x0))
SEL(s(n__s(y0)), cons(y1, n__sel(x0, x1))) → SEL(s(y0), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__dbl(y0), n__sel(x0, x1))) → SEL(dbl(activate(y0)), sel(activate(x0), activate(x1)))
SEL(s(n__dbls(y0)), cons(y1, n__from(x0))) → SEL(dbls(activate(y0)), from(x0))
ACTIVATE(n__sel(n__sel(y0, y1), n__dbl(x0))) → SEL(sel(activate(y0), activate(y1)), dbl(activate(x0)))
SEL(s(n__s(y0)), cons(y1, n__dbl(x0))) → SEL(s(y0), dbl(activate(x0)))
ACTIVATE(n__sel(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__dbls(n__from(x0))) → DBLS(from(x0))
ACTIVATE(n__sel(n__s(y0), n__from(x0))) → SEL(s(y0), from(x0))
SEL(s(n__s(y0)), cons(y1, n__indx(x0, x1))) → SEL(s(y0), indx(activate(x0), x1))
SEL(s(n__sel(y0, y1)), cons(y2, n__from(x0))) → SEL(sel(activate(y0), activate(y1)), from(x0))
SEL(s(X), cons(Y, Z)) → ACTIVATE(X)
SEL(s(n__dbl(y0)), cons(y1, x0)) → SEL(dbl(activate(y0)), x0)
DBL(s(X)) → ACTIVATE(X)
ACTIVATE(n__sel(n__indx(y0, y1), n__s(x0))) → SEL(indx(activate(y0), y1), s(x0))
ACTIVATE(n__sel(n__indx(y0, y1), n__sel(x0, x1))) → SEL(indx(activate(y0), y1), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(y0, n__from(x0))) → SEL(y0, from(x0))
ACTIVATE(n__sel(y0, x0)) → SEL(y0, x0)
SEL(s(n__dbl(y0)), cons(y1, n__indx(x0, x1))) → SEL(dbl(activate(y0)), indx(activate(x0), x1))
ACTIVATE(n__dbls(n__dbls(x0))) → DBLS(dbls(activate(x0)))
ACTIVATE(n__sel(n__indx(y0, y1), x0)) → SEL(indx(activate(y0), y1), x0)
SEL(s(n__dbls(y0)), cons(y1, n__dbls(x0))) → SEL(dbls(activate(y0)), dbls(activate(x0)))
ACTIVATE(n__dbl(n__s(x0))) → DBL(s(x0))
ACTIVATE(n__sel(y0, n__indx(x0, x1))) → SEL(y0, indx(activate(x0), x1))
SEL(s(n__dbl(y0)), cons(y1, n__dbl(x0))) → SEL(dbl(activate(y0)), dbl(activate(x0)))
ACTIVATE(n__sel(n__indx(y0, y1), n__from(x0))) → SEL(indx(activate(y0), y1), from(x0))
SEL(s(y0), cons(y1, n__dbls(x0))) → SEL(y0, dbls(activate(x0)))
ACTIVATE(n__sel(n__dbls(y0), n__from(x0))) → SEL(dbls(activate(y0)), from(x0))
SEL(s(n__sel(y0, y1)), cons(y2, n__indx(x0, x1))) → SEL(sel(activate(y0), activate(y1)), indx(activate(x0), x1))
ACTIVATE(n__dbl(n__sel(x0, x1))) → DBL(sel(activate(x0), activate(x1)))
SEL(s(n__s(y0)), cons(y1, n__dbls(x0))) → SEL(s(y0), dbls(activate(x0)))
ACTIVATE(n__indx(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__indx(n__from(x0), y1)) → INDX(from(x0), y1)
SEL(s(n__indx(y0, y1)), cons(y2, x0)) → SEL(indx(activate(y0), y1), x0)
ACTIVATE(n__indx(n__dbl(x0), y1)) → INDX(dbl(activate(x0)), y1)
SEL(s(n__s(y0)), cons(y1, x0)) → SEL(s(y0), x0)
INDX(cons(X, Y), Z) → ACTIVATE(Y)
ACTIVATE(n__sel(n__dbl(y0), n__indx(x0, x1))) → SEL(dbl(activate(y0)), indx(activate(x0), x1))
ACTIVATE(n__indx(n__indx(x0, x1), y1)) → INDX(indx(activate(x0), x1), y1)
ACTIVATE(n__sel(n__s(y0), n__dbls(x0))) → SEL(s(y0), dbls(activate(x0)))
ACTIVATE(n__indx(n__sel(x0, x1), y1)) → INDX(sel(activate(x0), activate(x1)), y1)
INDX(cons(X, Y), Z) → ACTIVATE(Z)
ACTIVATE(n__sel(n__indx(y0, y1), n__dbl(x0))) → SEL(indx(activate(y0), y1), dbl(activate(x0)))
ACTIVATE(n__dbls(X)) → ACTIVATE(X)
SEL(0, cons(X, Y)) → ACTIVATE(X)
ACTIVATE(n__sel(n__dbls(y0), n__dbls(x0))) → SEL(dbls(activate(y0)), dbls(activate(x0)))
ACTIVATE(n__sel(y0, n__dbls(x0))) → SEL(y0, dbls(activate(x0)))
DBLS(cons(X, Y)) → ACTIVATE(Y)
SEL(s(n__dbl(y0)), cons(y1, n__dbls(x0))) → SEL(dbl(activate(y0)), dbls(activate(x0)))
SEL(s(n__dbls(y0)), cons(y1, n__dbl(x0))) → SEL(dbls(activate(y0)), dbl(activate(x0)))
ACTIVATE(n__sel(n__sel(y0, y1), n__s(x0))) → SEL(sel(activate(y0), activate(y1)), s(x0))
ACTIVATE(n__sel(y0, n__s(x0))) → SEL(y0, s(x0))
SEL(s(y0), cons(y1, n__sel(x0, x1))) → SEL(y0, sel(activate(x0), activate(x1)))
SEL(s(n__dbl(y0)), cons(y1, n__from(x0))) → SEL(dbl(activate(y0)), from(x0))
SEL(s(n__sel(y0, y1)), cons(y2, x0)) → SEL(sel(activate(y0), activate(y1)), x0)
SEL(s(n__s(y0)), cons(y1, n__from(x0))) → SEL(s(y0), from(x0))
ACTIVATE(n__sel(X1, X2)) → ACTIVATE(X2)
SEL(s(y0), cons(y1, n__dbl(x0))) → SEL(y0, dbl(activate(x0)))
ACTIVATE(n__sel(n__sel(y0, y1), n__from(x0))) → SEL(sel(activate(y0), activate(y1)), from(x0))
SEL(s(n__dbl(y0)), cons(y1, n__sel(x0, x1))) → SEL(dbl(activate(y0)), sel(activate(x0), activate(x1)))
SEL(s(n__indx(y0, y1)), cons(y2, n__indx(x0, x1))) → SEL(indx(activate(y0), y1), indx(activate(x0), x1))
SEL(s(n__indx(y0, y1)), cons(y2, n__from(x0))) → SEL(indx(activate(y0), y1), from(x0))
ACTIVATE(n__sel(n__sel(y0, y1), x0)) → SEL(sel(activate(y0), activate(y1)), x0)
FROM(X) → ACTIVATE(X)
ACTIVATE(n__dbls(n__sel(x0, x1))) → DBLS(sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__dbl(y0), n__s(x0))) → SEL(dbl(activate(y0)), s(x0))
ACTIVATE(n__sel(n__dbls(y0), n__dbl(x0))) → SEL(dbls(activate(y0)), dbl(activate(x0)))
SEL(s(n__dbls(y0)), cons(y1, n__indx(x0, x1))) → SEL(dbls(activate(y0)), indx(activate(x0), x1))
ACTIVATE(n__sel(n__dbl(y0), n__dbls(x0))) → SEL(dbl(activate(y0)), dbls(activate(x0)))
ACTIVATE(n__sel(n__dbl(y0), x0)) → SEL(dbl(activate(y0)), x0)
ACTIVATE(n__dbl(n__indx(x0, x1))) → DBL(indx(activate(x0), x1))
DBLS(cons(X, Y)) → ACTIVATE(X)
ACTIVATE(n__sel(n__dbls(y0), n__indx(x0, x1))) → SEL(dbls(activate(y0)), indx(activate(x0), x1))
ACTIVATE(n__sel(n__sel(y0, y1), n__sel(x0, x1))) → SEL(sel(activate(y0), activate(y1)), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(y0, n__sel(x0, x1))) → SEL(y0, sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__dbls(y0), n__s(x0))) → SEL(dbls(activate(y0)), s(x0))
ACTIVATE(n__sel(y0, n__dbl(x0))) → SEL(y0, dbl(activate(x0)))
ACTIVATE(n__dbls(n__dbl(x0))) → DBLS(dbl(activate(x0)))
ACTIVATE(n__dbls(n__indx(x0, x1))) → DBLS(indx(activate(x0), x1))
SEL(s(y0), cons(y1, x0)) → SEL(y0, x0)
ACTIVATE(n__sel(n__sel(y0, y1), n__indx(x0, x1))) → SEL(sel(activate(y0), activate(y1)), indx(activate(x0), x1))
ACTIVATE(n__sel(n__dbls(y0), x0)) → SEL(dbls(activate(y0)), x0)
ACTIVATE(n__sel(n__s(y0), n__sel(x0, x1))) → SEL(s(y0), sel(activate(x0), activate(x1)))
SEL(s(n__dbls(y0)), cons(y1, x0)) → SEL(dbls(activate(y0)), x0)
SEL(s(n__indx(y0, y1)), cons(y2, n__dbls(x0))) → SEL(indx(activate(y0), y1), dbls(activate(x0)))
ACTIVATE(n__indx(x0, y1)) → INDX(x0, y1)
SEL(s(n__indx(y0, y1)), cons(y2, n__dbl(x0))) → SEL(indx(activate(y0), y1), dbl(activate(x0)))
ACTIVATE(n__sel(n__dbl(y0), n__dbl(x0))) → SEL(dbl(activate(y0)), dbl(activate(x0)))
ACTIVATE(n__sel(n__dbls(y0), n__sel(x0, x1))) → SEL(dbls(activate(y0)), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__sel(y0, y1), n__dbls(x0))) → SEL(sel(activate(y0), activate(y1)), dbls(activate(x0)))
ACTIVATE(n__sel(n__indx(y0, y1), n__dbls(x0))) → SEL(indx(activate(y0), y1), dbls(activate(x0)))
ACTIVATE(n__sel(n__dbl(y0), n__from(x0))) → SEL(dbl(activate(y0)), from(x0))
ACTIVATE(n__indx(n__dbls(x0), y1)) → INDX(dbls(activate(x0)), y1)
The TRS R consists of the following rules:
dbl(0) → 0
dbl(s(X)) → s(n__s(n__dbl(activate(X))))
dbls(nil) → nil
dbls(cons(X, Y)) → cons(n__dbl(activate(X)), n__dbls(activate(Y)))
sel(0, cons(X, Y)) → activate(X)
sel(s(X), cons(Y, Z)) → sel(activate(X), activate(Z))
indx(nil, X) → nil
indx(cons(X, Y), Z) → cons(n__sel(activate(X), activate(Z)), n__indx(activate(Y), activate(Z)))
from(X) → cons(activate(X), n__from(n__s(activate(X))))
s(X) → n__s(X)
dbl(X) → n__dbl(X)
dbls(X) → n__dbls(X)
sel(X1, X2) → n__sel(X1, X2)
indx(X1, X2) → n__indx(X1, X2)
from(X) → n__from(X)
activate(n__s(X)) → s(X)
activate(n__dbl(X)) → dbl(activate(X))
activate(n__dbls(X)) → dbls(activate(X))
activate(n__sel(X1, X2)) → sel(activate(X1), activate(X2))
activate(n__indx(X1, X2)) → indx(activate(X1), X2)
activate(n__from(X)) → from(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule SEL(s(y0), cons(y1, n__s(x0))) → SEL(y0, s(x0)) at position [1] we obtained the following new rules:
SEL(s(y0), cons(y1, n__s(x0))) → SEL(y0, n__s(x0))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE(n__dbl(n__dbl(x0))) → DBL(dbl(activate(x0)))
SEL(s(X), cons(Y, Z)) → ACTIVATE(Z)
ACTIVATE(n__sel(n__s(y0), n__dbl(x0))) → SEL(s(y0), dbl(activate(x0)))
ACTIVATE(n__sel(n__s(y0), n__indx(x0, x1))) → SEL(s(y0), indx(activate(x0), x1))
SEL(s(n__sel(y0, y1)), cons(y2, n__dbl(x0))) → SEL(sel(activate(y0), activate(y1)), dbl(activate(x0)))
ACTIVATE(n__dbl(X)) → ACTIVATE(X)
SEL(s(n__indx(y0, y1)), cons(y2, n__sel(x0, x1))) → SEL(indx(activate(y0), y1), sel(activate(x0), activate(x1)))
SEL(s(y0), cons(y1, n__from(x0))) → SEL(y0, from(x0))
ACTIVATE(n__sel(n__s(y0), x0)) → SEL(s(y0), x0)
ACTIVATE(n__from(X)) → FROM(X)
SEL(s(n__sel(y0, y1)), cons(y2, n__sel(x0, x1))) → SEL(sel(activate(y0), activate(y1)), sel(activate(x0), activate(x1)))
SEL(s(n__dbls(y0)), cons(y1, n__sel(x0, x1))) → SEL(dbls(activate(y0)), sel(activate(x0), activate(x1)))
SEL(s(y0), cons(y1, n__indx(x0, x1))) → SEL(y0, indx(activate(x0), x1))
ACTIVATE(n__dbls(x0)) → DBLS(x0)
ACTIVATE(n__sel(n__s(y0), n__s(x0))) → SEL(s(y0), s(x0))
ACTIVATE(n__sel(n__indx(y0, y1), n__indx(x0, x1))) → SEL(indx(activate(y0), y1), indx(activate(x0), x1))
SEL(s(n__sel(y0, y1)), cons(y2, n__dbls(x0))) → SEL(sel(activate(y0), activate(y1)), dbls(activate(x0)))
ACTIVATE(n__dbl(n__dbls(x0))) → DBL(dbls(activate(x0)))
INDX(cons(X, Y), Z) → ACTIVATE(X)
ACTIVATE(n__dbl(x0)) → DBL(x0)
SEL(s(n__dbls(y0)), cons(y1, n__s(x0))) → SEL(dbls(activate(y0)), s(x0))
SEL(s(n__s(y0)), cons(y1, n__sel(x0, x1))) → SEL(s(y0), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__sel(y0, y1), n__dbl(x0))) → SEL(sel(activate(y0), activate(y1)), dbl(activate(x0)))
SEL(s(n__dbls(y0)), cons(y1, n__from(x0))) → SEL(dbls(activate(y0)), from(x0))
ACTIVATE(n__sel(n__dbl(y0), n__sel(x0, x1))) → SEL(dbl(activate(y0)), sel(activate(x0), activate(x1)))
ACTIVATE(n__dbls(n__from(x0))) → DBLS(from(x0))
ACTIVATE(n__sel(X1, X2)) → ACTIVATE(X1)
SEL(s(n__s(y0)), cons(y1, n__dbl(x0))) → SEL(s(y0), dbl(activate(x0)))
ACTIVATE(n__sel(n__s(y0), n__from(x0))) → SEL(s(y0), from(x0))
SEL(s(n__s(y0)), cons(y1, n__indx(x0, x1))) → SEL(s(y0), indx(activate(x0), x1))
SEL(s(n__sel(y0, y1)), cons(y2, n__from(x0))) → SEL(sel(activate(y0), activate(y1)), from(x0))
SEL(s(X), cons(Y, Z)) → ACTIVATE(X)
ACTIVATE(n__sel(n__indx(y0, y1), n__s(x0))) → SEL(indx(activate(y0), y1), s(x0))
DBL(s(X)) → ACTIVATE(X)
SEL(s(n__dbl(y0)), cons(y1, x0)) → SEL(dbl(activate(y0)), x0)
ACTIVATE(n__sel(n__indx(y0, y1), n__sel(x0, x1))) → SEL(indx(activate(y0), y1), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(y0, n__from(x0))) → SEL(y0, from(x0))
ACTIVATE(n__sel(y0, x0)) → SEL(y0, x0)
ACTIVATE(n__dbls(n__dbls(x0))) → DBLS(dbls(activate(x0)))
SEL(s(n__dbl(y0)), cons(y1, n__indx(x0, x1))) → SEL(dbl(activate(y0)), indx(activate(x0), x1))
ACTIVATE(n__sel(n__indx(y0, y1), x0)) → SEL(indx(activate(y0), y1), x0)
SEL(s(n__dbls(y0)), cons(y1, n__dbls(x0))) → SEL(dbls(activate(y0)), dbls(activate(x0)))
ACTIVATE(n__dbl(n__s(x0))) → DBL(s(x0))
SEL(s(n__dbl(y0)), cons(y1, n__dbl(x0))) → SEL(dbl(activate(y0)), dbl(activate(x0)))
ACTIVATE(n__sel(y0, n__indx(x0, x1))) → SEL(y0, indx(activate(x0), x1))
ACTIVATE(n__sel(n__indx(y0, y1), n__from(x0))) → SEL(indx(activate(y0), y1), from(x0))
SEL(s(y0), cons(y1, n__dbls(x0))) → SEL(y0, dbls(activate(x0)))
SEL(s(n__sel(y0, y1)), cons(y2, n__indx(x0, x1))) → SEL(sel(activate(y0), activate(y1)), indx(activate(x0), x1))
ACTIVATE(n__sel(n__dbls(y0), n__from(x0))) → SEL(dbls(activate(y0)), from(x0))
ACTIVATE(n__dbl(n__sel(x0, x1))) → DBL(sel(activate(x0), activate(x1)))
SEL(s(n__s(y0)), cons(y1, n__dbls(x0))) → SEL(s(y0), dbls(activate(x0)))
ACTIVATE(n__indx(X1, X2)) → ACTIVATE(X1)
SEL(s(n__indx(y0, y1)), cons(y2, x0)) → SEL(indx(activate(y0), y1), x0)
ACTIVATE(n__indx(n__from(x0), y1)) → INDX(from(x0), y1)
ACTIVATE(n__indx(n__dbl(x0), y1)) → INDX(dbl(activate(x0)), y1)
SEL(s(n__s(y0)), cons(y1, x0)) → SEL(s(y0), x0)
INDX(cons(X, Y), Z) → ACTIVATE(Y)
ACTIVATE(n__sel(n__dbl(y0), n__indx(x0, x1))) → SEL(dbl(activate(y0)), indx(activate(x0), x1))
ACTIVATE(n__indx(n__indx(x0, x1), y1)) → INDX(indx(activate(x0), x1), y1)
ACTIVATE(n__sel(n__s(y0), n__dbls(x0))) → SEL(s(y0), dbls(activate(x0)))
SEL(s(y0), cons(y1, n__s(x0))) → SEL(y0, n__s(x0))
ACTIVATE(n__indx(n__sel(x0, x1), y1)) → INDX(sel(activate(x0), activate(x1)), y1)
INDX(cons(X, Y), Z) → ACTIVATE(Z)
ACTIVATE(n__sel(n__indx(y0, y1), n__dbl(x0))) → SEL(indx(activate(y0), y1), dbl(activate(x0)))
ACTIVATE(n__dbls(X)) → ACTIVATE(X)
SEL(0, cons(X, Y)) → ACTIVATE(X)
ACTIVATE(n__sel(n__dbls(y0), n__dbls(x0))) → SEL(dbls(activate(y0)), dbls(activate(x0)))
ACTIVATE(n__sel(y0, n__dbls(x0))) → SEL(y0, dbls(activate(x0)))
DBLS(cons(X, Y)) → ACTIVATE(Y)
ACTIVATE(n__sel(n__sel(y0, y1), n__s(x0))) → SEL(sel(activate(y0), activate(y1)), s(x0))
SEL(s(n__dbls(y0)), cons(y1, n__dbl(x0))) → SEL(dbls(activate(y0)), dbl(activate(x0)))
SEL(s(n__dbl(y0)), cons(y1, n__dbls(x0))) → SEL(dbl(activate(y0)), dbls(activate(x0)))
ACTIVATE(n__sel(y0, n__s(x0))) → SEL(y0, s(x0))
SEL(s(y0), cons(y1, n__sel(x0, x1))) → SEL(y0, sel(activate(x0), activate(x1)))
SEL(s(n__dbl(y0)), cons(y1, n__from(x0))) → SEL(dbl(activate(y0)), from(x0))
SEL(s(n__sel(y0, y1)), cons(y2, x0)) → SEL(sel(activate(y0), activate(y1)), x0)
SEL(s(y0), cons(y1, n__dbl(x0))) → SEL(y0, dbl(activate(x0)))
ACTIVATE(n__sel(X1, X2)) → ACTIVATE(X2)
SEL(s(n__s(y0)), cons(y1, n__from(x0))) → SEL(s(y0), from(x0))
ACTIVATE(n__sel(n__sel(y0, y1), n__from(x0))) → SEL(sel(activate(y0), activate(y1)), from(x0))
SEL(s(n__dbl(y0)), cons(y1, n__sel(x0, x1))) → SEL(dbl(activate(y0)), sel(activate(x0), activate(x1)))
SEL(s(n__indx(y0, y1)), cons(y2, n__indx(x0, x1))) → SEL(indx(activate(y0), y1), indx(activate(x0), x1))
ACTIVATE(n__sel(n__sel(y0, y1), x0)) → SEL(sel(activate(y0), activate(y1)), x0)
SEL(s(n__indx(y0, y1)), cons(y2, n__from(x0))) → SEL(indx(activate(y0), y1), from(x0))
FROM(X) → ACTIVATE(X)
ACTIVATE(n__sel(n__dbl(y0), n__s(x0))) → SEL(dbl(activate(y0)), s(x0))
ACTIVATE(n__dbls(n__sel(x0, x1))) → DBLS(sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__dbl(y0), n__dbls(x0))) → SEL(dbl(activate(y0)), dbls(activate(x0)))
SEL(s(n__dbls(y0)), cons(y1, n__indx(x0, x1))) → SEL(dbls(activate(y0)), indx(activate(x0), x1))
ACTIVATE(n__sel(n__dbls(y0), n__dbl(x0))) → SEL(dbls(activate(y0)), dbl(activate(x0)))
ACTIVATE(n__sel(n__dbl(y0), x0)) → SEL(dbl(activate(y0)), x0)
ACTIVATE(n__dbl(n__indx(x0, x1))) → DBL(indx(activate(x0), x1))
DBLS(cons(X, Y)) → ACTIVATE(X)
ACTIVATE(n__sel(n__dbls(y0), n__indx(x0, x1))) → SEL(dbls(activate(y0)), indx(activate(x0), x1))
ACTIVATE(n__sel(n__sel(y0, y1), n__sel(x0, x1))) → SEL(sel(activate(y0), activate(y1)), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(y0, n__sel(x0, x1))) → SEL(y0, sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__dbls(y0), n__s(x0))) → SEL(dbls(activate(y0)), s(x0))
ACTIVATE(n__sel(y0, n__dbl(x0))) → SEL(y0, dbl(activate(x0)))
ACTIVATE(n__dbls(n__dbl(x0))) → DBLS(dbl(activate(x0)))
ACTIVATE(n__dbls(n__indx(x0, x1))) → DBLS(indx(activate(x0), x1))
ACTIVATE(n__sel(n__sel(y0, y1), n__indx(x0, x1))) → SEL(sel(activate(y0), activate(y1)), indx(activate(x0), x1))
SEL(s(y0), cons(y1, x0)) → SEL(y0, x0)
ACTIVATE(n__sel(n__dbls(y0), x0)) → SEL(dbls(activate(y0)), x0)
ACTIVATE(n__sel(n__s(y0), n__sel(x0, x1))) → SEL(s(y0), sel(activate(x0), activate(x1)))
SEL(s(n__dbls(y0)), cons(y1, x0)) → SEL(dbls(activate(y0)), x0)
SEL(s(n__indx(y0, y1)), cons(y2, n__dbls(x0))) → SEL(indx(activate(y0), y1), dbls(activate(x0)))
ACTIVATE(n__indx(x0, y1)) → INDX(x0, y1)
SEL(s(n__indx(y0, y1)), cons(y2, n__dbl(x0))) → SEL(indx(activate(y0), y1), dbl(activate(x0)))
ACTIVATE(n__sel(n__dbl(y0), n__dbl(x0))) → SEL(dbl(activate(y0)), dbl(activate(x0)))
ACTIVATE(n__sel(n__sel(y0, y1), n__dbls(x0))) → SEL(sel(activate(y0), activate(y1)), dbls(activate(x0)))
ACTIVATE(n__sel(n__dbls(y0), n__sel(x0, x1))) → SEL(dbls(activate(y0)), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__indx(y0, y1), n__dbls(x0))) → SEL(indx(activate(y0), y1), dbls(activate(x0)))
ACTIVATE(n__sel(n__dbl(y0), n__from(x0))) → SEL(dbl(activate(y0)), from(x0))
ACTIVATE(n__indx(n__dbls(x0), y1)) → INDX(dbls(activate(x0)), y1)
The TRS R consists of the following rules:
dbl(0) → 0
dbl(s(X)) → s(n__s(n__dbl(activate(X))))
dbls(nil) → nil
dbls(cons(X, Y)) → cons(n__dbl(activate(X)), n__dbls(activate(Y)))
sel(0, cons(X, Y)) → activate(X)
sel(s(X), cons(Y, Z)) → sel(activate(X), activate(Z))
indx(nil, X) → nil
indx(cons(X, Y), Z) → cons(n__sel(activate(X), activate(Z)), n__indx(activate(Y), activate(Z)))
from(X) → cons(activate(X), n__from(n__s(activate(X))))
s(X) → n__s(X)
dbl(X) → n__dbl(X)
dbls(X) → n__dbls(X)
sel(X1, X2) → n__sel(X1, X2)
indx(X1, X2) → n__indx(X1, X2)
from(X) → n__from(X)
activate(n__s(X)) → s(X)
activate(n__dbl(X)) → dbl(activate(X))
activate(n__dbls(X)) → dbls(activate(X))
activate(n__sel(X1, X2)) → sel(activate(X1), activate(X2))
activate(n__indx(X1, X2)) → indx(activate(X1), X2)
activate(n__from(X)) → from(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE(n__sel(n__s(y0), n__indx(x0, x1))) → SEL(s(y0), indx(activate(x0), x1))
ACTIVATE(n__sel(n__s(y0), n__dbl(x0))) → SEL(s(y0), dbl(activate(x0)))
SEL(s(X), cons(Y, Z)) → ACTIVATE(Z)
ACTIVATE(n__dbl(n__dbl(x0))) → DBL(dbl(activate(x0)))
SEL(s(n__sel(y0, y1)), cons(y2, n__dbl(x0))) → SEL(sel(activate(y0), activate(y1)), dbl(activate(x0)))
ACTIVATE(n__dbl(X)) → ACTIVATE(X)
SEL(s(n__indx(y0, y1)), cons(y2, n__sel(x0, x1))) → SEL(indx(activate(y0), y1), sel(activate(x0), activate(x1)))
SEL(s(y0), cons(y1, n__from(x0))) → SEL(y0, from(x0))
ACTIVATE(n__sel(n__s(y0), x0)) → SEL(s(y0), x0)
ACTIVATE(n__from(X)) → FROM(X)
SEL(s(n__sel(y0, y1)), cons(y2, n__sel(x0, x1))) → SEL(sel(activate(y0), activate(y1)), sel(activate(x0), activate(x1)))
SEL(s(n__dbls(y0)), cons(y1, n__sel(x0, x1))) → SEL(dbls(activate(y0)), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__s(y0), n__s(x0))) → SEL(s(y0), s(x0))
ACTIVATE(n__dbls(x0)) → DBLS(x0)
SEL(s(y0), cons(y1, n__indx(x0, x1))) → SEL(y0, indx(activate(x0), x1))
SEL(s(n__sel(y0, y1)), cons(y2, n__dbls(x0))) → SEL(sel(activate(y0), activate(y1)), dbls(activate(x0)))
ACTIVATE(n__sel(n__indx(y0, y1), n__indx(x0, x1))) → SEL(indx(activate(y0), y1), indx(activate(x0), x1))
ACTIVATE(n__dbl(n__dbls(x0))) → DBL(dbls(activate(x0)))
INDX(cons(X, Y), Z) → ACTIVATE(X)
ACTIVATE(n__dbl(x0)) → DBL(x0)
SEL(s(n__dbls(y0)), cons(y1, n__s(x0))) → SEL(dbls(activate(y0)), s(x0))
SEL(s(n__s(y0)), cons(y1, n__sel(x0, x1))) → SEL(s(y0), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__dbl(y0), n__sel(x0, x1))) → SEL(dbl(activate(y0)), sel(activate(x0), activate(x1)))
SEL(s(n__dbls(y0)), cons(y1, n__from(x0))) → SEL(dbls(activate(y0)), from(x0))
ACTIVATE(n__sel(n__sel(y0, y1), n__dbl(x0))) → SEL(sel(activate(y0), activate(y1)), dbl(activate(x0)))
SEL(s(n__s(y0)), cons(y1, n__dbl(x0))) → SEL(s(y0), dbl(activate(x0)))
ACTIVATE(n__sel(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__dbls(n__from(x0))) → DBLS(from(x0))
ACTIVATE(n__sel(n__s(y0), n__from(x0))) → SEL(s(y0), from(x0))
SEL(s(n__s(y0)), cons(y1, n__indx(x0, x1))) → SEL(s(y0), indx(activate(x0), x1))
SEL(s(n__sel(y0, y1)), cons(y2, n__from(x0))) → SEL(sel(activate(y0), activate(y1)), from(x0))
SEL(s(X), cons(Y, Z)) → ACTIVATE(X)
SEL(s(n__dbl(y0)), cons(y1, x0)) → SEL(dbl(activate(y0)), x0)
DBL(s(X)) → ACTIVATE(X)
ACTIVATE(n__sel(n__indx(y0, y1), n__s(x0))) → SEL(indx(activate(y0), y1), s(x0))
ACTIVATE(n__sel(n__indx(y0, y1), n__sel(x0, x1))) → SEL(indx(activate(y0), y1), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(y0, n__from(x0))) → SEL(y0, from(x0))
ACTIVATE(n__sel(y0, x0)) → SEL(y0, x0)
SEL(s(n__dbl(y0)), cons(y1, n__indx(x0, x1))) → SEL(dbl(activate(y0)), indx(activate(x0), x1))
ACTIVATE(n__dbls(n__dbls(x0))) → DBLS(dbls(activate(x0)))
ACTIVATE(n__sel(n__indx(y0, y1), x0)) → SEL(indx(activate(y0), y1), x0)
SEL(s(n__dbls(y0)), cons(y1, n__dbls(x0))) → SEL(dbls(activate(y0)), dbls(activate(x0)))
ACTIVATE(n__dbl(n__s(x0))) → DBL(s(x0))
SEL(s(n__dbl(y0)), cons(y1, n__dbl(x0))) → SEL(dbl(activate(y0)), dbl(activate(x0)))
ACTIVATE(n__sel(y0, n__indx(x0, x1))) → SEL(y0, indx(activate(x0), x1))
ACTIVATE(n__sel(n__indx(y0, y1), n__from(x0))) → SEL(indx(activate(y0), y1), from(x0))
SEL(s(y0), cons(y1, n__dbls(x0))) → SEL(y0, dbls(activate(x0)))
ACTIVATE(n__sel(n__dbls(y0), n__from(x0))) → SEL(dbls(activate(y0)), from(x0))
SEL(s(n__sel(y0, y1)), cons(y2, n__indx(x0, x1))) → SEL(sel(activate(y0), activate(y1)), indx(activate(x0), x1))
ACTIVATE(n__dbl(n__sel(x0, x1))) → DBL(sel(activate(x0), activate(x1)))
SEL(s(n__s(y0)), cons(y1, n__dbls(x0))) → SEL(s(y0), dbls(activate(x0)))
ACTIVATE(n__indx(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__indx(n__from(x0), y1)) → INDX(from(x0), y1)
SEL(s(n__indx(y0, y1)), cons(y2, x0)) → SEL(indx(activate(y0), y1), x0)
ACTIVATE(n__indx(n__dbl(x0), y1)) → INDX(dbl(activate(x0)), y1)
SEL(s(n__s(y0)), cons(y1, x0)) → SEL(s(y0), x0)
INDX(cons(X, Y), Z) → ACTIVATE(Y)
ACTIVATE(n__sel(n__dbl(y0), n__indx(x0, x1))) → SEL(dbl(activate(y0)), indx(activate(x0), x1))
ACTIVATE(n__indx(n__indx(x0, x1), y1)) → INDX(indx(activate(x0), x1), y1)
ACTIVATE(n__sel(n__s(y0), n__dbls(x0))) → SEL(s(y0), dbls(activate(x0)))
ACTIVATE(n__indx(n__sel(x0, x1), y1)) → INDX(sel(activate(x0), activate(x1)), y1)
INDX(cons(X, Y), Z) → ACTIVATE(Z)
ACTIVATE(n__sel(n__indx(y0, y1), n__dbl(x0))) → SEL(indx(activate(y0), y1), dbl(activate(x0)))
ACTIVATE(n__dbls(X)) → ACTIVATE(X)
SEL(0, cons(X, Y)) → ACTIVATE(X)
ACTIVATE(n__sel(n__dbls(y0), n__dbls(x0))) → SEL(dbls(activate(y0)), dbls(activate(x0)))
ACTIVATE(n__sel(y0, n__dbls(x0))) → SEL(y0, dbls(activate(x0)))
DBLS(cons(X, Y)) → ACTIVATE(Y)
SEL(s(n__dbl(y0)), cons(y1, n__dbls(x0))) → SEL(dbl(activate(y0)), dbls(activate(x0)))
SEL(s(n__dbls(y0)), cons(y1, n__dbl(x0))) → SEL(dbls(activate(y0)), dbl(activate(x0)))
ACTIVATE(n__sel(n__sel(y0, y1), n__s(x0))) → SEL(sel(activate(y0), activate(y1)), s(x0))
ACTIVATE(n__sel(y0, n__s(x0))) → SEL(y0, s(x0))
SEL(s(y0), cons(y1, n__sel(x0, x1))) → SEL(y0, sel(activate(x0), activate(x1)))
SEL(s(n__dbl(y0)), cons(y1, n__from(x0))) → SEL(dbl(activate(y0)), from(x0))
SEL(s(n__sel(y0, y1)), cons(y2, x0)) → SEL(sel(activate(y0), activate(y1)), x0)
SEL(s(n__s(y0)), cons(y1, n__from(x0))) → SEL(s(y0), from(x0))
ACTIVATE(n__sel(X1, X2)) → ACTIVATE(X2)
SEL(s(y0), cons(y1, n__dbl(x0))) → SEL(y0, dbl(activate(x0)))
ACTIVATE(n__sel(n__sel(y0, y1), n__from(x0))) → SEL(sel(activate(y0), activate(y1)), from(x0))
SEL(s(n__dbl(y0)), cons(y1, n__sel(x0, x1))) → SEL(dbl(activate(y0)), sel(activate(x0), activate(x1)))
SEL(s(n__indx(y0, y1)), cons(y2, n__indx(x0, x1))) → SEL(indx(activate(y0), y1), indx(activate(x0), x1))
SEL(s(n__indx(y0, y1)), cons(y2, n__from(x0))) → SEL(indx(activate(y0), y1), from(x0))
ACTIVATE(n__sel(n__sel(y0, y1), x0)) → SEL(sel(activate(y0), activate(y1)), x0)
FROM(X) → ACTIVATE(X)
ACTIVATE(n__dbls(n__sel(x0, x1))) → DBLS(sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__dbl(y0), n__s(x0))) → SEL(dbl(activate(y0)), s(x0))
ACTIVATE(n__sel(n__dbls(y0), n__dbl(x0))) → SEL(dbls(activate(y0)), dbl(activate(x0)))
SEL(s(n__dbls(y0)), cons(y1, n__indx(x0, x1))) → SEL(dbls(activate(y0)), indx(activate(x0), x1))
ACTIVATE(n__sel(n__dbl(y0), n__dbls(x0))) → SEL(dbl(activate(y0)), dbls(activate(x0)))
ACTIVATE(n__sel(n__dbl(y0), x0)) → SEL(dbl(activate(y0)), x0)
ACTIVATE(n__dbl(n__indx(x0, x1))) → DBL(indx(activate(x0), x1))
DBLS(cons(X, Y)) → ACTIVATE(X)
ACTIVATE(n__sel(n__dbls(y0), n__indx(x0, x1))) → SEL(dbls(activate(y0)), indx(activate(x0), x1))
ACTIVATE(n__sel(n__sel(y0, y1), n__sel(x0, x1))) → SEL(sel(activate(y0), activate(y1)), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(y0, n__sel(x0, x1))) → SEL(y0, sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__dbls(y0), n__s(x0))) → SEL(dbls(activate(y0)), s(x0))
ACTIVATE(n__sel(y0, n__dbl(x0))) → SEL(y0, dbl(activate(x0)))
ACTIVATE(n__dbls(n__dbl(x0))) → DBLS(dbl(activate(x0)))
ACTIVATE(n__dbls(n__indx(x0, x1))) → DBLS(indx(activate(x0), x1))
SEL(s(y0), cons(y1, x0)) → SEL(y0, x0)
ACTIVATE(n__sel(n__sel(y0, y1), n__indx(x0, x1))) → SEL(sel(activate(y0), activate(y1)), indx(activate(x0), x1))
ACTIVATE(n__sel(n__dbls(y0), x0)) → SEL(dbls(activate(y0)), x0)
ACTIVATE(n__sel(n__s(y0), n__sel(x0, x1))) → SEL(s(y0), sel(activate(x0), activate(x1)))
SEL(s(n__dbls(y0)), cons(y1, x0)) → SEL(dbls(activate(y0)), x0)
SEL(s(n__indx(y0, y1)), cons(y2, n__dbls(x0))) → SEL(indx(activate(y0), y1), dbls(activate(x0)))
ACTIVATE(n__indx(x0, y1)) → INDX(x0, y1)
SEL(s(n__indx(y0, y1)), cons(y2, n__dbl(x0))) → SEL(indx(activate(y0), y1), dbl(activate(x0)))
ACTIVATE(n__sel(n__dbl(y0), n__dbl(x0))) → SEL(dbl(activate(y0)), dbl(activate(x0)))
ACTIVATE(n__sel(n__dbls(y0), n__sel(x0, x1))) → SEL(dbls(activate(y0)), sel(activate(x0), activate(x1)))
ACTIVATE(n__sel(n__sel(y0, y1), n__dbls(x0))) → SEL(sel(activate(y0), activate(y1)), dbls(activate(x0)))
ACTIVATE(n__sel(n__indx(y0, y1), n__dbls(x0))) → SEL(indx(activate(y0), y1), dbls(activate(x0)))
ACTIVATE(n__sel(n__dbl(y0), n__from(x0))) → SEL(dbl(activate(y0)), from(x0))
ACTIVATE(n__indx(n__dbls(x0), y1)) → INDX(dbls(activate(x0)), y1)
The TRS R consists of the following rules:
dbl(0) → 0
dbl(s(X)) → s(n__s(n__dbl(activate(X))))
dbls(nil) → nil
dbls(cons(X, Y)) → cons(n__dbl(activate(X)), n__dbls(activate(Y)))
sel(0, cons(X, Y)) → activate(X)
sel(s(X), cons(Y, Z)) → sel(activate(X), activate(Z))
indx(nil, X) → nil
indx(cons(X, Y), Z) → cons(n__sel(activate(X), activate(Z)), n__indx(activate(Y), activate(Z)))
from(X) → cons(activate(X), n__from(n__s(activate(X))))
s(X) → n__s(X)
dbl(X) → n__dbl(X)
dbls(X) → n__dbls(X)
sel(X1, X2) → n__sel(X1, X2)
indx(X1, X2) → n__indx(X1, X2)
from(X) → n__from(X)
activate(n__s(X)) → s(X)
activate(n__dbl(X)) → dbl(activate(X))
activate(n__dbls(X)) → dbls(activate(X))
activate(n__sel(X1, X2)) → sel(activate(X1), activate(X2))
activate(n__indx(X1, X2)) → indx(activate(X1), X2)
activate(n__from(X)) → from(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.